
Data Prefetching and Eviction Mechanisms
of In-Memory Storage Systems Based
on Scheduling for Big Data Processing

Chien-Hung Chen , Ting-Yuan Hsia , Yennun Huang, Fellow, IEEE, and Sy-Yen Kuo , Fellow, IEEE

Abstract—In-memory techniques keep data into faster and more expensive storage media for improving performance of big data

processing. However, existing mechanisms do not consider how to expedite the data processing applications that access the input

datasets only once. Another problem is how to reclaim memory without affecting other running applications. In this paper, we provide

scheduling-aware data prefetching and eviction mechanisms based on Spark, Alluxio, and Hadoop. The mechanisms prefetch data and

release memory resources based on the scheduling information. A mathematical method is proposed for maximizing the reduction of

data access time. To make the mechanisms applicable in large-scale environments, we propose a heuristic algorithm to reduce the

computational time. Furthermore, an enhanced version of the heuristic algorithm is also proposed to increase the amount of prefetched

data. Finally, we perform real-testbed and simulation experiments to show the effectiveness of the proposed mechanisms.

Index Terms—Big data processing, in-memory systems, scheduling information, data prefetching, data eviction

Ç

1 INTRODUCTION

IN the era of Big Data, the amount of data on the world
will double in size every two years and reach at least 4.4

ZB by 2020 [1]. Cloud data management is one of the key
challenges to improve performance of processing large
amount of data. Nowadays, multi-tiered storage systems
are used in cloud data centers where different storage
media devices have a variety of capacity and performance
capabilities. A cloud data management system has to decide
which data should be placed on low-latency devices to meet
performance requirements. If there are datasets that will not
be accessed again, the management system should also evict
them to high-latency devices for releasing more valuable
resources to meet performance requirements of other
datasets.

In-memory techniques keep datasets in random access
memory to speed up processing of large amounts of data-
sets. The techniques are widely used in data processing
and data storage systems. The in-memory data processing
systems strive to analyze a large amount of data in a small
amount of time. By keeping the frequently used data in
memory, the execution time of jobs can be significantly

improved, especially for the iterative jobs that iteratively
reading the same datasets. However, non-iterative jobs
are difficult to gain benefits from in-memory techniques,
and the memory resources may be wasted on storing
the datasets that will not be accessed again. Besides
improving read throughput, write workloads are major
bottleneck for data-intensive jobs. An in-memory data
storage system is able to address such bottleneck. It
caches output data in memory and achieves fault-toler-
ance by leveraging lineage [2].

In a large cloud data center, many data-intensive jobs
may be running simultaneously. However, each computing
node in the cloud has limited memory space to cache input
and output data for multiple jobs. When a job j1 is writing
its output datasets, the input datasets of job j2 may be
evicted from the memory due to contention of memory
resources. In such a case, if the job j2 cannot read its input
datasets from memory, its execution time will be extended.
To address this problem, there is a need for management of
memory usage for multiple jobs. Most in-memory data
processing systems reserve memory space for storing input
datasets, intermediate results, and application programs.
An in-memory data processing system usually caches data
in memory when the data is read or written. Nevertheless,
it cannot guarantee that the cached data will be reused.
Even if the data blocks will not be accessed again, the data
blocks may still be kept in memory until the eviction policy
throws them out. If there is not enough space to cache other
data blocks, the system will evict some data blocks from
memory using Least Recently Used (LRU) policy [3]. In-
memory storage systems adopt the same policy to deal with
the datasets. Due to that the policy is not aware of which
data blocks will be accessed, it may evict the data blocks

� C.-H. Chen, T.-Y. Hsia, and S.-Y. Kuo are with the Department of Electri-
cal Engineering, National Taiwan University, Taipei 10617, Taiwan.
E-mail: {d01921025, r03921054, sykuo}@ntu.edu.tw.

� Y. Huang is with the Research Center for Information Technology Innova-
tion, Academia Sinica, Taipei 11529, Taiwan. E-mail: yennunhuang@citi.
sinica.edu.tw.

Manuscript received 14 May 2018; revised 28 Dec. 2018; accepted 5 Jan. 2019.
Date of publication 14 Jan. 2019; date of current version 8 July 2019.
(Corresponding author: Chien-Hung Chen).
Recommended for acceptance by S. Chen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2892957

1738 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5219-3666
https://orcid.org/0000-0001-5219-3666
https://orcid.org/0000-0001-5219-3666
https://orcid.org/0000-0001-5219-3666
https://orcid.org/0000-0001-5219-3666
https://orcid.org/0000-0001-7959-8145
https://orcid.org/0000-0001-7959-8145
https://orcid.org/0000-0001-7959-8145
https://orcid.org/0000-0001-7959-8145
https://orcid.org/0000-0001-7959-8145
https://orcid.org/0000-0002-3021-8321
https://orcid.org/0000-0002-3021-8321
https://orcid.org/0000-0002-3021-8321
https://orcid.org/0000-0002-3021-8321
https://orcid.org/0000-0002-3021-8321
mailto:
mailto:
mailto:

that will be accessed in near future. In the meantime, it can
also keep other unnecessary data blocks in memory.

To deal with these problems, in this paper, we provide
the Scheduling-Aware Data Prefetching (SADP) for data
processing services in a cloud data center. The proposed
SADP includes data prefetching and data eviction mecha-
nisms. Both of the mechanisms are aware of the job schedul-
ing in the cloud. The prefetching mechanism is able to load
input data into memory before its corresponding tasks are
executed. It can avoid unnecessary prefetching workloads.
For the eviction mechanism, it aims to release memory
space without affecting the access of running applications.
When a block of datasets has already been processed by a
task, the data block will be released from memory space if it
will not be accessed again. The proposed mechanisms are
implemented by modifying Spark [4], Alluxio [5], and
Hadoop [6]. Apache Spark and Hadoop MapReduce have
become popular data processing systems. Especially for
Spark, it optimizes the execution of data-intensive applica-
tions with features of interactive data exploration and
multi-pass analytics. Alluxio is an in-memory data storage
system with ability to manage data in tiered storage. Multi-
tiered storage is conducive to balance capacity and perfor-
mance requirements of data storage. It provides more flexi-
ble data management in a cloud data center. Currently, the
existing data managements still do not take job scheduling
and prefetching deadline into account. The proposed mech-
anisms can use scheduling information to prefetch data in
time and then evict data without affecting the running
applications.

This paper is extended version of our previous work [7].
Comparing with the previous work, the paper makes the
following additional contributions:

� Data prefetching mechanisms have been proposed to
accelerate the progress of data processing in previ-
ous work. However, some data blocks cannot be pre-
fetched into memory in time. It causes unnecessary
workload and decrease the number of successfully
prefetched data blocks. In the paper, we redesign the
data prefetching mechanisms with the consideration
of deadline constraint.

� The optimal solution of the data prefetching problem
is obtained by integer linear programming. To avoid
large computational time for obtaining the optimal
solution, a heuristic algorithm is presented in Section
4.2. Additionally, an enhanced version of the heuris-
tic algorithm is also given in Section 4.3, which is not
proposed in previous work.

� Comparing with the conference version, the pro-
posed mechanisms can prefetch data to non-local
computing nodes. So that the number of prefetched
data blocks can be increased.

� In addition to redesigning the data prefetching
mechanisms proposed in the conference version, the
journal version also extends the evaluations. More
metrics in real-testbed experiments are evaluated.
More existing mechanisms are compared with our
proposed mechanisms. Simulations are also per-
formed to evaluate the proposed mechanisms in
large-scale cloud data centers.

Overall, this paper makes the following contributions:

� This paper proposes scheduling-aware data pre-
fetching mechanisms with considering of deadline
constraint. The proposed mechanisms are able to
avoid unnecessary prefetching workloads caused by
the data blocks which cannot be prefetched in time.

� A data eviction mechanism considering multiple
jobs running on the cloud is presented, where each
computing node in the cloud has limited memory
resources.

� The data prefetching problem is optimally solved by
Integer Linear Programming (ILP). Moreover, two
efficient heuristic algorithms are also proposed to
solve the data prefetching problem in a large-scale
cloud data center.

� The mechanisms proposed in this paper are imple-
mented on a real-testbed. The evaluations show that
the proposed mechanisms can achieve about 3.77
times faster than default mechanism in heteroge-
neous environment.

The rest of this paper is organized as follows. The related
work is given in Section 2. Section 3 gives system model.
Section 4 presents our mechanisms. Section 5 shows the
evaluations of the proposed mechanisms. Finally, section 6
concludes this paper.

2 RELATED WORK

To improve the performance of data processing, in-
memory techniques have been extensively used in data proc-
essing systems. Spark [8] is a popular data processing frame-
work for data analysis. It presents a data abstraction, called
resilient distributed dataset (RDD), which allows application
jobs to cache intermediate results in memory with a fault-
tolerance mechanism. Mammoth [9] is an implementation of
in-memory techniques based on MapReduce framework. It
aims to allocate and reclaim memory resources among com-
puting nodes for enhancing overall performance of applica-
tion jobs. In the system, each computing node is deployed a
special engine to globally manage the memory resources
among a cluster. GraphLab [10] is an efficient shared-
memory implementation of parallel computing framework
for machine learning. A graph-based data model is exploited
for representing data and computational dependencies.
However, it assumes all data can be stored in memory with-
out the problem of resource contention. SINGA [11] is an
open-source platform for distributed deep learning. It is able
to support different neural net partitioning schemes and
training frameworks. Shared memory resources among the
systems are leveraged to store intermediate results for reduc-
ing data accessing costs. More data processing systems are
proposed for real-time purposes, such as Apache Storm [12]
andYahoo! S4 [13]. Among existing in-memory data process-
ing systems, these systems only take intermediate data of an
application job into account, therefore these in-memory data
processing systems can only benefit from the jobs iteratively
accessing the same datasets. On the other hand, memory
resource contention is not considered as well. If there are
multiple jobs running in the system, some portions of the
intermediate data will be evited from memory, such that

CHEN ETAL.: DATA PREFETCHING AND EVICTION MECHANISMS OF IN-MEMORYSTORAGE SYSTEMS BASED ON SCHEDULING FOR BIG... 1739

these application jobs have to read them from hard disk
drives.

In general, there are two types of in-memory storage sys-
tems: file systems and database systems, respectively stor-
ing unstructured and structured data. Alluxio, formerly
called Tachyon [2], is a distributed file system. It can work
as a cache system to enhance performance of data accessing
for other file systems and databases. Alternatively, it can
work as a standalone in-memory file system managing the
storage resources. Mercury [14] is a distributed in-memory
database for storing structured data. A dedicated hash table
is designed for small data sizes of key-value pairs to
improve throughput of data analytics jobs. MICA [15] is a
key-value in-memory storage system focusing on both read-
and write-intensive jobs. It aims to use fewer high-perfor-
mance computing nodes to reduce latency of data access.
New data structure and memory management are designed
for optimizing data store and cache by using the properties
of the jobs. Pilaf [16] is a distributed in-memory key-value
storage system with high-performance networks. It allows
application jobs directly access the data stored in memory
from remote computing nodes. A self-verifying data struc-
ture is also provided to address contention of read-write
operations. Including above systems, most existing in-mem-
ory storage systems focus on design of memory manage-
ment based on specific properties of data structures and
iterative jobs. However, the job scheduling is not taken into
account. In this work, we focus on the Hadoop Distributed
File System and provide data prefetching mechanisms
based on the schedulers provided by Hadoop. Alluxio is
used to manage memory resources among the distributed
system.

Job scheduling plays an important role in allocating CPU
and memory resources for executing data processing jobs
among a large-scale cloud. There are three popular schedul-
ing modes to deal with multiple jobs: Standalone, Mesos,
and YARN. In standalone mode, all jobs in a cluster are run
in FIFO (first in, first out) order. The tasks of each job can be
allocated to all computing nodes for reaching maximum
usage of CPU and memory resources [3]. In Mesos mode,
the system allocates resources in accordance with user-
defined policy, such as fair sharing and strict priority [17]. It
can also share system resources at different granularities
based on latency requirements of Spark jobs. In YARN
mode, one of simple FIFO, Capacity, and Fair Share schedu-
lers can be selected depending on the user needs [18]. In
addition, data locality can have significant impacts on job
scheduling. A task of running jobs prefers to be allocated to
where its input data stored. Therefore, the job schedulers
are designed around the general principle of data locality.

Data prefetching has been widely used in data process-
ing systems [19], [20], [21]. The authors of [19] implemented
PACMan to speed up the execution of MapReduce jobs by
caching the input data in memory. In the proposed caching
mechanisms, the number of parallel tasks was mainly con-
cerned. If an input data block of a running task is not
cached, the job execution time can be extended. LIFE and
LFU-F were two eviction mechanisms proposed for mini-
mizing the average job execution time and maximizing sys-
tem efficiency, respectively. Data prefetching was used to
enhance the access of singly-accessed data blocks. The

authors of [21] designed HPSO to provide data prefetching
service for improving data locality of MapReduce. The pro-
posed HPSO predicts the remaining execution time of map
tasks and further estimates which computing unit will
become idle. Each computing node is able to automatically
complete data prefetching before a map task is launched.
The authors of [20] addressed the non-local straggler prob-
lem in MapReduce by leveraging data prefetching. A specu-
lative scheduler was proposed to predict the appearance
time and the location of future non-local straggler tasks.
The FlexFetch was built to generate prefetching requests
based on the proposed speculative scheduler and allocate
network resources for data prefetching. To allocate appro-
priate network resources, the authors implemented an
OpenFlow-based network controller to guarantee the end-
to-end network transition rate. Among the existing mecha-
nisms, the prefetching deadline and resource contentions
are not taken into account.

3 PRELIMINARIES

This section presents the system model of in-memory sys-
tems used in this paper. The definitions regarding to the
data prefetching problem are also provided.

3.1 System Description

Spark is a big data processing framework designed to be
fast and general. The resilient distributed dataset is the core
concept in Spark. It represents a collection of data partitions
distributed across many computing nodes. A Spark job can
be divided into two or more stages, where each stage con-
sists of a set of tasks. The stages are processed in order
defined by a directed acyclic graph (DAG). A central pro-
cess, called the driver, is responsible for coordinating with a
number of executors to run the tasks of the given job. The
number of tasks in a stage is the same as that of data parti-
tions generated in the previous stage. Each task within a job
accesses its corresponding data partition, then it performs
either transformation or action operations. If a task performs
transformation, its output is constructed as new RDDs. If it
performs action, it will return the computing results to the
driver process or store the output of the job. When a Spark
job is submitted, the driver process firstly asks the cloud
manager for resources to launch executors. Tasks of the
given job are sent to the executors to perform transforma-
tion or action operations. In the first stage of a job, the tasks
usually perform transformation operation to load each data
block of the input datasets from an external storage system
and create RDDs. In the last stage, the tasks perform action
operation to save output results to the external storage sys-
tem. Our proposed mechanisms aim to prefetch and evict
the data blocks of the datasets stored in the external storage
system, instead of the data partitions of RDDs used in data
processing layer. Therefore, the proposed mechanisms can
be applied to MapReduce framework [22] as well, where
the input data blocks of map tasks and the output data
blocks of reduce tasks are concerned to be prefetched or
evicted to/from the memory of the external storage. The
intermediate output data of the map tasks is not taken into
account.

1740 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

Alluxio is the external storage system used in this paper.
It supports tiered storage to manage data blocks stored in
memory (MEM) and hard disk drive (HDD). When a job is
writing new data blocks to the external storage, the data
blocks will be firstly cached to the memory. If there is no
enough space to accommodate new data blocks, the system
will evict the least recently used data blocks cached memory
by default. For the under storages, Alluxio can integrate
with various under storages, such as Apache HDFS [23],
OpenStack Swift [24], Amazon S3 [25], etc. The HDFS, a
popular distributed file system, is used as the under storage
of Alluxio. It can be deployed to the same computing nodes
with Spark and Alluxio, so that the system can take advan-
tage of data locality to avoid network transmission delay.
The system architecture we used is illustrated in Fig. 1. As
shown in Fig. 1, Spark, Alluxio and Hadoop are installed
among the computing nodes, where Spark and MapReduce
are responsible for executing data processing jobs. Alluxio
is the external storage system of the Spark. It reserves a part
of memory space of each computing node for caching data
blocks from its under storage system. HDFS is Alluxio’s
under storage system storing input and output datasets of
Spark jobs in hard disk drives.

The proposed data prefetching and eviction mechanisms
can be applied to another computing framework if its
scheduler is able to provide explicit task assignments based
on current system status. Due to the prediction of where
and when a task will be launched are the important metrics,
the proposed mechanisms are suggested to be used with the
schedulers which are able to assign a task to the same com-
puting node when the statuses of computing resources and
data locations are the same. Otherwise, the schedulers can
make inaccurate prediction of task assignments and cause
lower performance.

3.2 System Model and Definitions

This paper investigates scheduling-aware data prefetching
and eviction mechanisms in heterogeneous cloud environ-
ments. Before elaborating our proposed mechanisms, we
first give the following definitions.

Given a large-scale cloud with a set of computing nodes
N . Each computing node n 2 N has reserved a certain size of
memory space for caching data blocks. The available

memory space is firstly used for data prefetching. If the
memory is full, the system will evict suitable number of data
blocks frommemory. A job in the cloud consists of a number
of tasks, where each task ti of the job is associated with an
input split size tsi . If the input split size of a task is greater
than the size of data blocks, the task has to receive two or
more data blocks to find the corresponding data records as
input. For example, a task with 128MB of input split size has
to access two 64 MB data blocks. According to the running
state, the tasks can be classified into three types: completed
tasks, running tasks, and pending tasks. The information of
both job scheduling and datasets can be obtained from the
master node of the system. Each computing node in the
cloud periodically reports the states of the running tasks and
the stored data blocks to themaster node. Therefore, themas-
ter can allocate pending tasks to the computing nodes based
on a specific scheduling policy. Furthermore, it can predict
which pending task will be launched after a running task is
completed on a node. For the datasets, there are two sets of
data blocks Dh and Dm. Each data block di in Dh and Dm is
associated with a data block size dsi . To simplify the prefetch-
ing problem, we set 64 MB as the basic data block size and
assume that all data block sizes are multiples of 64 MB. If a
data block size is 128MB, it can be normalized as 2 basic data
block size. In the following sections, we use the basic data
block size to count the number of available storage space.
The Dh denotes a set of data blocks stored in the disks.Dp is
a subset ofDh, where each data block di 2 Dp is not cached in
memory and its corresponding task is predicted to be
launched on a specific computing node. The Dm denotes a
set of data blocks cached in memory. De is a subset of Dm.
For each data block di 2 De, its corresponding task is com-
pleted. Among the computing nodes, the available memory
space is represented by a set of memory blocks M, where
each memory block mk 2 M can cache a data block. All data
blocks are assumed to be accessed by write-once, read-
many-times pattern [26].

Estimation of data access time is complicated especially in
heterogeneous clouds. The queuing modelM=G=m=mþ r is
applied to evaluate the data access performance in could
computing systems [27]. In our system model, all computing
nodes can report the data access rates and network transmis-
sion rates for dynamical estimation. For each computing
node n 2 N , the master node maintains real-time disk access
rate rhn and memory access rate rmn , respectively. With the
real-time information, if a data block di with size dsi is stored
on node n 2 N , the local disk access time Tdisk

localðn; diÞ and
memory access time Tmem

local ðn; diÞ can be estimated by dsi � rhn
and dsi � rmn , respectively. The real-time network transmis-
sion rates are maintained in an jN j by jN j matrix R. If a data
block di with size dsi is sent from nj to nk, its network trans-
mission time can be estimated by dsi �Rjk.

Definition 1. If a task is running on the node nr and its corre-
sponding data block di 2 Dh is stored in the disk of node nh,
the disk access time of the data block di is estimated by

Tdisk
accessðnr; nh; diÞ ¼ Tdisk

localðnh; diÞ þ Ttransðnr; nh; diÞ; (1)

where Tdisk
localðnh; diÞ is the access time taken for the local disk of

node nh storing the data block di, Ttransðnr; nhÞ is the network

Fig. 1. The architecture of our system.

CHEN ETAL.: DATA PREFETCHING AND EVICTION MECHANISMS OF IN-MEMORYSTORAGE SYSTEMS BASED ON SCHEDULING FOR BIG... 1741

transmission time taken for node nr to retrieve data block di
from a remote computing node nh. Note that, the data block di
can be cached to the memory of another node different from nr

and nh.

Definition 2. If a data block dj 2 Dm is cached in memory of
node nm, the memory access time of the data block dj is esti-
mated by

Tmem
accessðnr; nm; djÞ ¼ Tmem

local ðnm; djÞ þ Ttransðnr; nm; djÞ; (2)

where Tmem
local ðnm; djÞ is the access time taken for local memory

of node nm cached the data block dj. If the data block dj 2 Dm

is determined to be evicted and written to a data block di 2 Dh

stored node nh, its eviction cost can be estimated by Eq. (1).

Definition 3. Given a task running on node nr, a data block
di 2 Dh stored in the disk of node nh, a data block dj 2 Dm rep-
resenting the data block di cached in memory of node nm. The
benefit time earned by caching the data block di to memory of
node nm can be estimated as

Tbenefitðnr; nh; di; nm; djÞ
¼ Tdisk

accessðnr; nh; diÞ � Tmem
accessðnr; nm; djÞ:

(3)

The benefit time Tbenefitðnm; diÞ earned by caching the data
block di is required to be removed when the data block dj is
evicted for data prefetching.

Note that, if a data block di can be prefetched to the mem-
ory of node nm, it has to satisfy the prefetching conditions:
1) The prefetching of data block di can be completed before
the corresponding pending task is launched. 2) The benefit
time is greater than 0. 3) The size of the data block has to
smaller or equal to the available memory space. Based on
the above definitions and conditions, the main objective of
the data prefetching problem is to find an optimal dataset

Dopt from Dp and De, which can maximize the total benefit
time and minimize the total data eviction cost.

Estimation of task remaining time is critical to predict
when a pending task will be launched. We follow our previ-
ous work [28] to estimate the data processing time of a new
task by using the computing resources, the number of
instructions, input data size, etc. Moreover, the data process
rate of a task t on a node n, denoted by rtn, is also sent to the
master node for monitoring the performance changes. So
the data processing time of a task t running on node n,
denoted by Tprocessðn; tÞ, can be dynamically estimated by
dsi � rtn, where dsi is the size of the input data block di.

The estimation of task remaining time is estimated by

Ttask
remainðtrÞ ¼ Taccess

remainðtrÞ þ Tprocess
remain ðtrÞ; (4)

where tr is a task running on node nr, T
access
remainðtrÞ is the

remaining data access time, and Tprocess
remain ðtrÞ is remaining

data processing time. The remaining data access time can be
estimated by Eq. (1) and Eq. (2), and replacing the input
data size dsi by the remaining input data size drsi . Finally, the
remaining data access time can be estimated by dsri � rtrnr .

4 SCHEDULING-AWARE DATA PREFETCHING

4.1 Optimal Solution

The data prefetching problem can be optimally solved by
Integer Linear Programming. ILP is a mathematical tech-
nique to the found optimal solution, where its canonical
form includes a linear objective function, a number of linear
constraints, and an integer solution set. In this section, the
canonical form of ILP corresponding to the prefetching
problem is expressed as Eq. (5) to Eq. (12). The used nota-
tions can be found in Table 1.

Maximize
X

8di2Dp

X

8nm2N
xim � fTbenefitðnm; diÞ þ ag

�
X

8dj2De

X

8nm2N
yjm � Tdisk

accessðnm; djÞ;
(5)

subject to 8di 2 Dp;
X

8nm2N
xim � dsi � am; (6)

8di 2 Dp;
X

8nm2N
xim � 1; (7)

8dj 2 De;
X

8nm2N
yjm � 1; (8)

8di 2 Dp;
X

8nm2N
xim � Tbenefitðnm; diÞ > 0; (9)

8di 2 Dp;
X

8nm2N
xim � Tdisk

accessðnm; diÞ < TremainðtrÞ; (10)

8nm 2 N;
X

8di2Dp

xim � dsi �
X

8dj2De

yjm � dsj ¼ am; (11)

8di 2 Dp ^ 8dj 2 De ^ 8nm 2 N; xim; yjm 2 f0; 1g: (12)

TABLE 1
Summary of Notations

Notation Description

N A set of computing nodes in the cloud.
Dh A set of data blocks stored in the hard disk drives.
Dm A set of data blocks cached in the memory.
Dp A set of data blocks stored in the hard disk drives,

where their corresponding tasks are the pending
tasks predicted to be launched.

De A the set of data blocks cached in the memory,
where their corresponding tasks are completed.

M A set of memory blocks, where each memory block
mk 2 M can cache a data block.

am The number of available memory space in the
computing node nm.

tr A running task associated with a remaining
execution time TremainðtrÞ. After the task tr is
completed, a task ti is will be launched on the same
node. Then, its corresponding data block di will be
prefetched to a node nm.

a A coefficient that is set to
1þmax8dj2Dm^8nm2NTdisk

accessðnm; djÞ.
xim A binary variable indicating whether a data blocks

di is prefetched to memory of node nm.
yjm A binary variable indicating whether a data blocks

dj is evicted from memory of node nm.

1742 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

For the Eq. (5), it is the objective function of the canonical
form. There are two terms in the objective function. The first
term is the benefit time of the data blocks prefetching to
memory, and the second term is the benefit time that have
to be removed due to the eviction of data blocks. The sym-
bol Dp denotes a set of data blocks stored in hard disk
drives, where their corresponding tasks are predicted to be
launched. The De denotes a set of data blocks cached in
memory, where their corresponding tasks are completed. N
is a set of nodes in the cloud. In the Eq. (5), the data pre-
fetching and eviction can be obtained based on the binary
variables xim and yjm, respectively. If xim is 1, the corre-
sponding data block di is selected to be cached in memory
of node nm, where the data block di can earn the benefit
time Tbenefitðnm; diÞ. If yjk is also 1, the corresponding data
block dj is evicted from memory of node nm. The evicted
data block may have to store back to disk, where the cost of
eviction is estimated Eq. (1). The coefficient is set to

a ¼ 1þ max
8dj2Dm^8nm2N

Tdisk
accessðnm; djÞ: (13)

By setting the coefficient a, each weight of xim has larger
weight than each weight of yjm. It guarantees that the data
prefetching works when the disk access cost of storing
evicted data blocks is greater than the earned benefit time.
In accordance with the constraints of Eq. (7) to Eq. (12), the
canonical form will maximize the benefit time. If the mem-
ory is full and there is a data block di which weight is
greater than the data block dj’s weight, the objective func-
tion will evict dj and cache di by setting xim and yjm as 1. If
there is a data block that is evicted from memory, the canon-
ical form will cache another data block due to Eq. (11). The
reason will be explained later. From the above description,
we can know that the canonical form will firstly prefetch
high-weight data blocks. Then, it replaces low-weight data
blocks by high-weight data blocks. Eq. (6) expresses that the
data block’s size dsi had to small or equal to the available
memory space am on node nm. Eqs. (7) and (8) respectively
express that a data block stored in hard disk drives or mem-
ory can only be cached or evicted once. Eq. (9) denotes that
a data block can be prefetched if and only if the access time
of the data block can be improved. Eq. (10) is the time con-
straint indicating that the selected data block di has to be
prefetched in time. TremainðtrÞ denotes the running task tr’s
remaining execution time. In Eq. (11), the number of pre-
fetched data blocks in a node should equal to the number of
evicted data blocks plus the free memory space of the node.
Due to this constraint, the high-weight data blocks will fill
up the free memory space of the system, and the low-weight
data blocks in memory can be replaced by high-weight data
blocks. Finally, the Eq. (12) is given for setting the solution
domain. The variables xim and yjm can only be 0 or 1, respec-
tively. Note that, there are many dynamical parameters can
also be changed in different runs depending on dynamical
workloads, such as a and am. In our system, all dynamical
parameters are reported from the computing nodes and col-
lected on the master node, so the master node is able to use
these parameters locally.

In the above canonical form, there are jDpj � jN j and
jDej � jN j binary variables in xim and yjm. In a cloud, the

number of nodes jNj can be up to 25,000 [29]. Solving ILP is
well-known to be NP-complete [30]. If jDpj, jDej and jN j are
large, the above canonical form of ILP will take much
computational time to obtain the optimal solution of the
prefetching problem. To reduce the computational time, we
propose two heuristic algorithms for the data prefetching
problem.

4.2 Heuristic Algorithm

In this section, we present a heuristic algorithm, which also
assumes that the scheduling information is available from
computing layer. The algorithm consists of three phases: ini-
tial phase, prefetching phase and eviction phase. The basic
idea of the heuristic algorithm is given in Fig. 2. When a job
is submitted, the job is associated with an input dataset, and
then it will be put in a ready queue. The input dataset is
divided into multiple data blocks. Each task of the job can
read or write its corresponding data block from/to the
external storage. Before submitting the job, multiple data
processing jobs may have been running simultaneously in
the cloud. In such a case, a data processing job may be
repeated several times. The characteristic of each task of a
job can be known in advance. The characteristic provides
the information such as the task progress and the average
task execution time in accordance with the input data block.
Using the information, the completion time of a task can be
predicted. For example, the completion time of a task can be
roughly predicted by the average task execution time minus
the elapsed time of the task. The input data blocks stored in
hard disk drives are collected in a set of data blocks Dh. The

Fig. 2. The pseudo-code of the heuristic algorithm.

CHEN ETAL.: DATA PREFETCHING AND EVICTION MECHANISMS OF IN-MEMORYSTORAGE SYSTEMS BASED ON SCHEDULING FOR BIG... 1743

Dm denotes the set of data blocks that have been cached in
memory. The states and locations of the data blocks can be
obtained from the external storage system. In the heuristic
algorithm, the initial phase is used to find which data blocks
are prefetchable and evictable. In prefetching phase, it pre-
dicts when and which pending tasks will be launched on
specific computing nodes. The corresponding data blocks of
the pending tasks are prefetched to the computing nodes
which will run the pending tasks. If a task has processed its
corresponding data, the data block can be evicted from the
memory. The eviction phase releases memory resources if
remaining memory space is not enough to prefetch data
blocks.

4.2.1 Initial Phase

Before a new job is submitted to the cloud, its input datasets
have already been stored in the external storage system.
When a new job is submitted to the cloud, both of its input
and output datasets have been specified. The new job is
then put in a job ready queue for waiting for execution.
While there may already be a number of jobs running simul-
taneously in the cloud, it is necessary to find the following
data blocks before running the pending tasks of the jobs.

� Prefetchable data blocks (The data blocks that can be pre-
fetched into memory). Considering multiple jobs run-
ning on the cloud with limited computing resources,
only a portion of tasks can run simultaneously in the
cloud at a time. According to job scheduling, each
job running on the cloud can only launch a specific
number of tasks. Some pending tasks have to wait
for execution. If the input data blocks of these pend-
ing tasks are not cached in memory, these data
blocks are classified as prefetchable data blocks. In
other words, the prefetchable data blocks are the
input data blocks of the pending tasks, which are not
cached in memory.

� Evictable data blocks (The data blocks that can be evicted
from memory). When multiple jobs running in the
cloud, several data blocks may have been cached in
memory. If a job reads its input dataset from the exter-
nal storage system, each task of the job only reads one
data block of the dataset. If the input data block of a
completed task is not a prefetchable data block, it
will not be accessed again. Evicting such data block
will not affect accessing of other running tasks. In
this phase, the proposed mechanism decides which
data blocks can be evicted without affecting other
running tasks.

An example is given in Fig. 3, where there are two jobs
running in a cloud with the Fair scheduling. The job j1 per-
forms reading, and the job j2 performs writing, respectively.
Based on the job scheduling, the jobs j1 and j2 respectively
hold two executors to perform their tasks. The t1;4 and t1;5
are two tasks of job j1 respectively reading data blocks d1;4
and d1;5 from the external storage system. The tasks t2;5 and
t2;6 of job j2 read the data blocks d2;5 and d2;6, respectively.
There are 11 data blocks d1;1, d1;2, d1;3, d1;4, d1;5, d2;1, d2;2, d2;3,
d2;4, d2;5, and d2;6 that have already cached in memory of the
external storage system, where d2;1, d2;2, d2;3, and d2;4 are the
new data blocks generated by the job j2. In the example, we

assume that all data blocks have the same size and the exter-
nal storage system can at most cache 12 data blocks in mem-
ory. The initial phase firstly determines which data blocks
are evictable. Based on the task execution log, the tasks t1;1,
t1;2, t1;3, t2;1, t2;2, t2;3, and t2;4 are finished. Therefore, their
corresponding input data blocks d1;1, d1;2, d1;3, d2;1, d2;2, d2;3,
and d2;4 are decided to be evictable data blocks. After find-
ing the evictable data blocks, the eviction phase then deter-
mines which data blocks can be prefetched into memory. In
this phase, all of the pending tasks t1;6, t1;7, t1;8, t1;9, t2;7, t2;8,
t2;9, and t2;10 are the tasks that will be launched in near
future. Their corresponding input data blocks d1;6, d1;7, d1;8,
d1;9, d2;8, d2;7, d2;9, and d2;10 are decided to be the prefetchable
data blocks. Totally, eight data blocks are decided to be pre-
fetchable data blocks. The initial phase just decides which
data blocks are evictable and prefetchable. The executions
of prefetching and eviction are actually performed in the
following prefetching phase and eviction phase.

4.2.2 Prefetching Phase

The proposed mechanism turns into the prefetching phase.
When the free memory resources are distributed across the
cloud data center, a pending task may be launched on a
computing node different from the location of its corre-
sponding data block. The job scheduling allocates pending
tasks to computing nodes with consideration of data local-
ity. In prefetching phase, it firstly predicts when and which
pending task will be allocated to a computing node, then
the corresponding data block of the task is selected to be

Fig. 3. An example to demonstrate the heuristic algorithm.

1744 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

prefetched to the node. By receiving the state reports from
each computing node, the master node maintains the prog-
ress and the elapsed execution time of each running task.
The remaining execution time of a running task tr is esti-
mated by Eq. (4).

Based on estimation of the remaining execution time, we
can predict when and where an executor will be released
for running another pending task. In the prefetching phase,
it performs data prefetching on the computing nodes in
order of the release sequence of the executors. As shown in
the example of Fig. 3, the running tasks are completed by
the sequence of t1;4, t1;5, t2;5, t2;6. Base on the sequence, the
prediction will be progressed in the order of n1, n2, n3, n4.
As mentioned in Section 2, the job scheduling prefers to
allocate pending tasks to where their input data blocks
located to achieve data locality [18]. Based on data locality
and scheduling policy, we can predict which pending tasks
will be launched on a specific computing node. In the Fig. 3,
the task t1;4 is running on computing node n1. If the running
task t1;4 is completed, the node n1 will release an executor to
run another pending task. The job scheduling will allocate a
task of j1 to node n1, because each job holds the same num-
ber of executors to run its tasks. To achieve data locality, the
job scheduling prefers to find a task whose corresponding
data block is closest to the computing node. Therefore, the
pending task t1;6 will be allocated to the node n1. The corre-
sponding data block d1;6 of task t1;6 is selected to be pre-
fetched. After prediction, the data block d1;6 is judged
whether it can be prefetched. If a data block di can be pre-
fetched to node nm, it satisfies the prefetching conditions.

In the example of Fig. 3, the access time Tdisk
accessðn1; d1;6Þ is

less than Tremainðt1;4Þ, and the Tbenefitðn1; d1;6Þ is 15. It means
that the data block d1;6 can be prefetched to n1 in time and
can gain benefit time. Each computing node in cluster will
be checked to find a placement that can obtain the maxi-
mized benefit time. In the example, the data block d1;6 is
decided to be prefetched to node n1. The prefetching phase
will check each computing node to predict and find a pre-
fetching placement with maximized benefit time. The tasks
t1;7, t2;7, and t2;8 are predicted to be launched on node n2, n3,
and n4, respectively. Finally, only d1;7, d2;7, and d2;8 are pre-
fetched in memory of n3, n4, and n2, respectively. The total
benefit time is 46.

The effectiveness of data prefetching is dependent on
how many data blocks can be prefetched before the corre-
sponding tasks are launched. In a cloud computing system,
many jobs may be run simultaneously. Data prefetching
can cause resource contention if there are insufficient
storage or network bandwidth. In such a case, the system
cannot guarantee that all data blocks of pending tasks can
be cached before the corresponding tasks are launched. In
the example of Fig. 3, t1;7 and t2;8 are two tasks predicted to
be launched on node n2 and n4, respectively. However, if
we restrict that the data blocks can only be prefetched to the
nodes where the pending tasks will be launched, the data
blocks d1;7 and d2;8 cannot be prefetched to the nodes n2 and
n4, due to the time limitation. If a data block of pending
task is not prefetched, it will extend the execution time of
the whole job [3], [19]. With limited available resources, the
data blocks should be prefetched as many as possible for
the pending tasks. Therefore, our proposed mechanisms

allow prefetching data blocks to the nodes different from
where the pending tasks will be launched.

4.2.3 Eviction Phase

In the initial phase, the evictable data blocks are found.
However, there are two types of evictable data blocks: un-
modified data blocks and modified data blocks. The un-
modified data blocks are not changed when they are caching
in memory. Conversely, the modified data blocks are new or
updated data blocks. These data blocks aremaintained by the
external storage system. By default, the external storage sys-
tem achieves data fault tolerance using lineage technique [2].
Any changes of data blocks are traced by a logical directed
acyclic graph. It means that any data blocks written by jobs
will be persisted in the memory first. If these data blocks are
evicted from memory before writing to hard disk drives, the
evicted data blocks will be lost. Therefore, if the modified
data blocks are selected to be evicted, these data blocks
should be written to the hard disk drives before eviction. In
the eviction phase, it decides which evictable data blocks
should be evicted from memory of the node if there is no
available space. To avoid affecting other tasks accessing their
data blocks, the emptymemory space is preferred to be used.
Instead of modified data blocks, the un-modified data blocks
are firstly selected to be evicted from memory. After the pre-
fetching phase, the destinations of the prefetched data blocks
have been decided. The computing nodes have to reserve
memory resource for the prefetched data blocks. In the exam-
ple of Fig. 3, d1;6, d1;7, d2;7, and d2;8 are prefetched in memory
of n1, n3, n4, and n2, respectively. The computing nodes n1, n3

and n2 respectively have to evict one of the evictable data
blocks. For the computing node n1, it holds two evictable
data blocks d1;2 and d2;1, where d1;2 is an un-modified data
block, and d2;1 is a modified data block. According to the
mechanism described above, the d1;2 and d1;1 are prior to be
selected by n1 and n2, respectively. Amodified data block d2;2
is selected by node n3 because there is no un-modified data
block chaced in n3. After selecting the un-modified andmodi-
fied data blocks, the selected modified data blocks are
updated to the original copies stored in the disks. If a modi-
fied data block is a completely new data block, it will be
stored in the local disk of computing node caching the modi-
fied data block. Finally, the selected data blocks are erased
frommemory.

4.3 Enhancements to Heuristic Algorithm

As mentioned in Section 4.2, the effectiveness of data pre-
fetching is dependent on the number of prefetched data
blocks. However, the heuristic algorithm cannot achieve the
maximum number of the prefetched data blocks. Addition-
ally, the total benefit time cannot be maximized as well. In
this section, we propose an enhanced version of the heuris-
tic algorithm to maximize the total number of prefetched
data blocks and the benefit time.

In the heuristic algorithm, we have predicted which tasks
will be launched on specific computing nodes P , and the
evictable data blocks have also been found De. To maximize
the number of prefetched data blocks and the total benefit
time, the enhanced version of the heuristic algorithm plans
to prefetch the data blocks to more suitable computing

CHEN ETAL.: DATA PREFETCHING AND EVICTION MECHANISMS OF IN-MEMORYSTORAGE SYSTEMS BASED ON SCHEDULING FOR BIG... 1745

nodes. Based on the new prefetching results, the evicted
data blocks are also reselected.

To achieve the goal, we transform the data prefetching
problem to the maximum-cost maximum-flow problem. A
three-step algorithm is proposed to establish the network
graph, as shown in Fig. 4.

Definition 4. Given a network flow graph G ¼ ðV;EÞ, where V
is a set of nodes, E is a set of directed edges. Two special nodes
represent a source node s 2 V and a sink node t 2 V . The
amount of flow sent from the source node s to the sink node t is
denoted by f , where the leaving flow of the source node s must
equal to the entering flow of sink node t. Other than the source
node s and the sink node t, the amount of flow entering a node
v 2 V is equal to the amount of flow leaving the node v. Each
edge ðu; vÞ 2 E is associated with a sub flow fsðu; vÞ � 0, a
capacity aðu; vÞ > 0, and a cost cðu; vÞ, where the capacity rep-
resents the maximum amount of the flow which can be sent via
the edge (aðu; vÞ � fsðu; vÞ). If a sub flow fsðu; vÞ is sent by the
edge ðu; vÞ, the cost of passing the edge is fsðu; vÞ � cðu; vÞ.
The maximum-cost maximum-flow problem is to find the maxi-
mum amount of flow f passing the network graph with maxi-
mum total cost.

4.3.1 The First Step

In the prefetching phase, it has predicted which pending
task will be launched, and the corresponding data blocks

are represented by a set of Dp. However, the heuristic
algorithm may not obtain optimal total benefit time. Due
to the remaining execution time of the running tasks,
some data blocks may not be prefetched in time as well.
In such a case, the pending tasks have to find other
appropriate computing nodes to prefetch their corre-
sponding data blocks. When processing a prefetching
request for a data block, it is required to confirm which
computing nodes can satisfy the prefetching conditions.
In accordance with these constraints, each pending task
can find one or more computing nodes to prefetch its cor-
responding data block. In the example of Fig. 3, the tasks
t1;6, t1;7, t2;7, and t2;8 are predicted to be launched on com-
puting node n1, n2, n4, and n3, respectively. Based on the
deadline constraint, if a data block di can be cached in
memory of computing node nm in time, then a directed
edge is connected from di to nm. The relationship between
the data blocks and the appropriate computing nodes can
be modeled as a subgraph of the network flow graph, as
shown in Fig. 5.

The capacity and cost of each edge are set as follows. For
each directed edge ðdi; nmÞ connected from di to nm, the
capacity aðdi; nmÞ is set to 1 and the cost cðdi; nmÞ is set to
Tbenefit þ a, where Tbenefitðnm; diÞ is the benefit time esti-
mated by Eq. (3) and a is the maximal disk access time plus
1 estimated by Eq. (13).

4.3.2 The Second Step

The computing nodes have to reserve memory space to
cache the prefeched data blocks. In the SADP, the available
memory space of each computing node is represented by
several memory blocks, where each memory block can
cache a data block with the maximal size. The memory
blocks will be used first for data prefetching. If the memory
blocks are not available on a node, some data blocks cached
in memory need to be replaced by the prefetched data
blocks. In the initial phase of the heuristic algorithm, the
evictable data blocks are found. Based on the locations of
evictable data blocks and the memory blocks, we can extend
the graph of Fig. 5. As shown in Fig. 6, each computing node
is connected to the evictable data blocks if the node caches
them. Note that, each memory block is connected with the
node where it is located. The node n4 also connects to a
memory block m1. For each new edge from nm in N to dj in
De, the capacity aðnm; djÞ is set to 1 and the cost cðnm; djÞ is
set to 0. For the memory blocks, each edge from nm in N to
mk in M, the capacity aðnm;mkÞ is set to 1 and the cost
cðnm;mkÞ is set to 0.

Fig. 4. The pseudo-code to establish a network flow graph.

Fig. 5. A subgraph representing the relationship between the data blocks
and the appropriate computing nodes.

1746 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

4.3.3 The Third Step

In the third step, a source node s and a sink node t are
added to complete the network flow graph. The source
node s is connected to each prefetched data block di in Dp.
For each edge ðs; diÞ connected from s to di, the capacity
aðs; diÞ is set to 1 and the cost cðs; diÞ is set to 0. For each
edge ðdj; tÞ connected from dj to t, the capacity aðdj; tÞ is set
to 1, the cost cðdj; tÞ is set to the negative of Tdisk

accessðno; doÞ,
where no is the computing node which caches the data block
do, and the do is the original copy of dj stored in hard disk
drives. If the data block dj doesn’t have to store back to the
hard disk drives, the cost cðdj; tÞ is set to 0. By adding the
source node s and the sink node t, a network flow graph
can be constructed as shown in Fig. 7.

4.3.4 Solving the Maximum-Cost Maximum-Flow

Problem

The maximum-cost maximum-flow problem is a variation
of the well-known minimum-cost maximum-flow problem.
Several algorithms have been proposed to solve the prob-
lem in polynomial time [31], [32], [33]. It has been known
that solution guarantees that the total cost and the amount
of flow passed from the source node s to the sink node t are
maximum. Therefore, the total benefit time and the number
of prefetched data blocks can be maximized by transform-
ing the optimal solution of the maximum-cost maximum-
flow problem. If a unit of flow is transmitted via di 2 Dp,
nm 2 N , and dj 2 De, it represents that the data block di is
decided to be prefetched to the memory of node nm, and the
data block dj cached in node nm is evicted. Otherwise, if a
unit of flow is transmitted via di 2 Dp, nm 2 N , and
mk 2 M, the data prefetching of data block di will occupy
the memory block mk of node nm. Due to the cost settings of
each edge connected to the sink node t, the amount of flow
prefers to pass via the memory blocks. According to the
optimal solution of Fig. 7, the data blocks d1;6, d1;7, d2;8, and
d2;7 are respectively prefetched to the nodes n1, n3, n2,
and n4. The memory block m1 is occupied by the d2;7. The
data blocks d2;1, d1;3, and d2;3 are evicted from memory.

Comparing to the original heuristic algorithm, the enhanced
version can prefetch more data blocks d1;7 and d2;8.

Note that, if the input split size of a Spark job is set to
4MB and the input split of its corresponding data block is
64 MB, the proposed mechanisms determine whether the
whole 64 MB of data block can be prefetched to an appropri-
ate computing node in time. If the data block satisfies the
prefetching conditions, it will be accessed from the external
storage and then be divided into 4MB of input splits for the
Spark job. If a task will be launched, its corresponding data
block will be checked whether it can be prefetched in time
with considerations of the data block size and the available
memory space. In the enhanced version of heuristic algo-
rithm, different sizes of data blocks are treated as the maxi-
mum size of data blocks. For example, 64 MB and 128 MB of
data blocks are treated as 128 MB of data blocks. The reason
is that each data block is mapping to a unit flow in the mini-
mum-cost maximum-flow problem. It causes some 64 MB
of data blocks cannot be selected to perform prefetching
due to the limitation of available memory size. Therefore,
the enhanced version is recommended to be used when the
data block sizes are the same.

5 EVALUATION

In this section, we show our testbed experimental results.
The experiments were conducted under heterogeneous
environments to evaluate our Scheduling-Aware Data Pre-
fetching mechanisms.

5.1 Experimental Environments

We establish our testbed environments by using XenServer
virtualization software [34] to configure 25 virtual machines
on 6 physical machines. The proposed data prefetching
mechanisms are implemented by modifying source code
of Spark 1.6.1, Alluxio 1.2.0, and Hadoop 2.7.2. All

Fig. 6. A subgraph established by the second step.

Fig. 7. The network flow graph.

CHEN ETAL.: DATA PREFETCHING AND EVICTION MECHANISMS OF IN-MEMORYSTORAGE SYSTEMS BASED ON SCHEDULING FOR BIG... 1747

experiments run on Spark jobs using Alluxio as the external
storage system and HDFS as the under storage system. Due
to continuous upgrades of infrastructures [35], node hetero-
geneity has become inevitable in cloud environment. We use
four types of physical machines to establish a heterogeneous
testbed. In the testbed, three physical machines are the first
type and each is with 2 cores 2.5 GHz processor, 8 GB of
memory, and 500 GB of disk. The other three physical
machines are the second type, third type and forth type,
respectively. The second type iswith 2 cores 2.50GHz proces-
sor, 16 GB of memory, 1 TB of disk. The third type is with
quad core 3.30 GHz processor, 32 GB of memory, and 2 TB of
disk. The forth type with quad core 4.00 GHz processor,
64 GB of memory, and 4 TB of disk. The network connection
between machines is Gigabit Ethernet. Furthermore, four
types of virtual machines are configured with considerations
of heterogeneity, as shown in Table 2. The virtual machines
of type 1 are with the smallest computing capacities and stor-
age, which can be fitted into more physical machines. Virtual
machines of type 2 and type 3 are assumed to be themachines
with common computing capacities and storage used in
cloud. The virtual machine of type 4 is of the highest comput-
ing and storage capacities for special requirements. The
virtual machine placements are set manually to use all
resources of physical machines. In each virtual machine,
25 and 25 percent of the memory are allocated for Spark and
Alluxio, respectively. For the aspect of workloads, Word-
Count, TeraSort, PageRank, and K-means are common
benchmarks [36], [37], [38], [39] to represent different kinds
of workloads in a big data processing system. To accurately
estimate the data access time, data transmission time, and the
task remaining time, we run these benchmarks in advance to
record relevant parameters, such as data access rates, data
transmission rates and data processing rates. In each experi-
mental runs, these parameters are also reported to the master
node for estimating real-time performance. To predict task
assignments, a predictor is implemented to receive the status
report from computing nodes and run a virtual scheduler
when the system status is updated. Once the task assign-
ments are predicted, the mechanisms determine which data
blocks can be prefetched in time and witch data blocks
cached inmemory should be evicted.

In each experimental run, we generated 40 to 80 jobs
from the benchmark jobs and submitted to the system in a
random order. Each benchmark job is with five jobs by vary-
ing sizes of input datasets as 200 GB, 400 GB, 800 GB,
1600 GB, and 3200 GB. The five datasets are divided into
data blocks of size 64 MB, 64 MB, 128 MB, 128 MB and
128 MB, respectively. Note that, a dataset can be accessed
by multiple jobs simultaneously. After above settings, 100

experimental runs are performed. We concern the following
metrics in each testbed run.

� Total job execution time: the sum of execution time
of all jobs.

� Data prefetching rate: the number of prefetched data
blocks divided by the number of launched tasks. If a
data block has already been cached in memory when
its corresponding task is launched, the data block is
determined to be prefetched successfully.

� Local access rate: the number of local-access tasks
divided by the number of launched tasks.

� Algorithm computational time: the time caused by
performing the prefetching algorithm.

5.2 Experimental Results

In experimental results, we compare our proposed data pre-
fetching mechanisms with four previous mechanisms:
default data caching used in Alluxio (DEFAULT) [5], PAC-
MAN [19], High Performance Scheduling Optimizer
(HPSO) [21], and Taming Non-local Stragglers (TNLS) [20].
Like our proposed SADP, data prefetching is also concerned
by PACMAN, TNLS, and HPSO. However, PACMAN,
HPSO, and TNLS are proposed for MapReduce framework.
To compare with these existing mechanisms, the Hadoop
2.7.2 is modified to implement PACMAN, HPSO, TNLS,
and our proposed SADP. The modified Hadoop is able to
estimate the task remaining time and data access time.
Based on the scheduling information of Hadoop, the mecha-
nisms are implemented by calling Alluxio to cache the spe-
cific data. In addition to the intermediate output data of
map tasks, the proposed SADP is able to prefetch and evict
the input and output data blocks of a MapReduce job to/
from memory of the external storage.

We propose three mechanisms to solve the data prefetch-
ing problem. As mentioned in Section 4.1, the proposed
canonical form of Integer Linear Programming is used to
obtain the optimal solution of data prefetching problem. The
proposed optimal solution is called O_SADP. However, the
proposed O_SADP is not suitable to deal with big datasets on
a large-scale cloud data center. In Section 5.3, we particularly
compare O_SADP with the other proposed mechanisms in a
simulation environment. A heuristic algorithm is proposed
to quickly solve the data prefetching problem, called
H_SADP. H_SADP is of eviction mechanism and is also an
extension version of data prefetching mechanism we pro-
posed in [7]. To enhance the H_SADP, we further transform
the data prefetching problem to a maximum-cost maximum-
flow problem. By solving the network flow problem, we can
prefetch more data blocks in memory. To fully understand
advantages and disadvantages of the enhancement, the
enhanced version of H_SADP is also performed in experi-
ments, called E_SADP. As for other comparisons, the pro-
posed mechanisms are able to improve the execution
performance of multiple jobs. We adopt FIFO and Fair sched-
ulers to schedule the jobworkloads.

Fig. 8 shows the comparison of the total job execution
time in testbed environments with FIFO scheduler based on
average case, best case, and worst case. Here, the total job
execution time of each mechanism is normalized against the
average total job execution time of DEFAULT. Comparing

TABLE 2
Types of Virtual Machines

Type vCPU Memory Disk
VMs hosted on each PM

PM 1 PM 2 PM 3 PM 4

1 1 2 GB 128 GB 3 5 1 3
2 2 4 GB 256 GB 0 1 5 0
3 4 8 GB 512 GB 0 0 1 5
4 4 16 GB 1024 GB 0 0 0 1

1748 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

with DEFAULT, PACMAN, HPSO, TNLS, H_SADP, and
E_SADP, can achieve the average improvement of the total
job execution time about 31, 22, 13, 55, and 63 percent in 40
jobs. In 80 jobs, PACMAN, HPSO, TNLS, H_SADP, and
E_SADP achieve the average improvement of the total job
execution time about 22, 17, 9, 59, and 75 percent. As men-
tioned in Section 4.2.2, the proposed mechanisms allow pre-
fetching data blocks to the nodes different from where the
pending tasks will be launched. Comparing with previous
mechanisms, H_SADP and E_SADP have lower total job
execution time. DEFAULT mechanism caches data in mem-
ory only when the data is accessed. Without data prefetch-
ing, DEFAULT has the largest total job execution time.
Although PACMAN, HPSO, and TNLS support data pre-
fetching, the prefetching deadline is not taken into account.
If a task is launched before completion of caching its input
data block, it will access the original copy from the disk.
Additional workloads of unnecessary data prefetching can
even prolong the job execution time. As shown in Fig. 8, the
total job execution times of PACMAN, HPSO, and TNLS
are longer than H_SADP and E_SADP on average. As
increasing the number of jobs, the proposed mechanism can
gain more improvement. E_SADP is 76 and 64 percent of
H_SADP in Fig. 8a and 8b, respectively. E_SADP transforms
the data prefetching problem to maximum-cost maximum-
flow problem, which can maximize the total benefit time
and the number of prefetched data blocks.

Fig. 9 shows the comparison of the total job execution time
with Fair scheduler in 40 jobs and 80 jobs, respectively. Com-
paring to DEFAULT, the other mechanisms PACMAN,
HPSO, TNLS, H_SADP, and E_SADP respectively improve

26, 16, 12, 56, and 65 percent of the total job execution time in
the 40 jobs, as shown in Fig. 9a. With multiple jobs running
simultaneously on the system, the jobs will incur longer exe-
cution time due to resource contention. In 80 jobs, the total job
execution time of PACMAN, HPSO, TNLS, H_SADP, and
E_SADP achieve 85, 90, 96, 52, and 32 percent of DEFAULT
on average, as shown in Fig. 9b. In SADP, the data eviction
policy is aware of which data blocks cached in memory that
will not be used. By releasing memory space of these unused
data blocks, SADP can achieve better memory usage. As
shown in Fig. 9, the total job execution times of H_SADP and
E_SADP are shorter than PACMAN,HPSO, and TNLS.

Figs. 10 and 11 depict the comparisons of the data pre-
fetching rates under FIFO and Fair schedulers, respectively.
As shown in Fig. 10a, H_SADP and E_SADP have the high-
est data prefetching rate. H_SADP is a heuristic algorithm
which cannot guarantee to achieve optimal solution. As a
result, H_SADP is 82 percent of E_SADP. PACMAN is
respectively 53 and 45 percent of H_SADP and E_SADP. In
PACMAN, the scheduling information is not taken into
account in eviction mechanism. The data blocks that will
be used may be evicted from memory. Although it can
still prefetch the data blocks evicted, it cannot promise that
all evicted useful data block will be taken back in time.
Without eviction mechanisms, HPSO and TNLS are 82 and
65 percent of PACMAN, where TNLS has lower than HPSO
because it only takes the straggler tasks into account. As
shown in Fig. 10a, the data prefetching rate of PACMAN,
HPSO, TNLS, H_SADP, and E_SADP can achieve 2.4, 1.9,
1.6, 4.8, and 5.7 times of DEFAULT in 40 jobs. In Fig. 10b,
PACMAN, HPSO, TNLS, H_SADP, and E_SADP can

Fig. 8. Normalized total job execution time under FIFO scheduling. (a) 40 jobs. (b) 80 jobs.

Fig. 9. Normalized total job execution time under Fair scheduling. (a) 40 jobs. (b) 80 jobs.

Fig. 10. Data prefetching rate under FIFO scheduling. (a) 40 jobs. (b) 80 jobs.

CHEN ETAL.: DATA PREFETCHING AND EVICTION MECHANISMS OF IN-MEMORYSTORAGE SYSTEMS BASED ON SCHEDULING FOR BIG... 1749

achieve the data prefetching rate of DEFAULT by about 3.2,
2.5, 1.9, 6.8, and 8.4 times, respectively.

The Fig. 11 illustrates the comparisons of the data prefetch-
ing rate under Fair scheduler. Compared to scenario where
FIFO scheduler is used, multiple jobs running on the cluster
have higher probabilities to access the same data blocks
cached inmemory. As shown in Fig. 11, with consideration of
the scheduling and data locality information, the proposed
H_SADP and E_SADP can prefetch more data blocks than
other previous mechanisms. E_SADP is able to prefetch a
data block to the memory of a remote computing node from
where the corresponding task will be launched. Therefore,
the data prefetching rate of E_SADP can be increased by 23
and 35 percent of H_SADP in 40 and 80 jobs, respectively. As
shown in Fig. 11a, PACMAN, H_SAPD, and E_SADP with
eviction mechanisms can achieve 1.8, 4.4, and 5.6 times of
data prefetching rate of DEFAULT. Without consideration of
prefetching deadline and benefit time, PACMAN, HPSO,
and TNLS only achieve by 42, 33, and 26 percent of data
prefetching rate of E_SADP. In 80 jobs, the data prefetching
rate of PACMAN, HPSO, and TNLS achieve by 35, 26, and
20 percent of E_SADP, as shown in Fig. 11b.

Figs. 12 and 13 exhibit the local access rates. Unless
DEFAULT, TNLS has lower average local access rates than
other mechanisms (PACMAN, HPSO, H_SADP, E_SADP).
The reason is that TNLS only concerns data locality of the
straggler tasks. However, the number of straggler tasks is
much less than the total number of tasks running on the clus-
ter. HPSO applies data prefetching to improve data locality of
normal tasks. As a result, comparing with TNLS, HPSO has
higher local access rates. With eviction policy, PACMAN has

highest local access rates among the previous mechanisms.
For our proposedmechanisms, both ofH_SADP and E_SADP
are higher than PACMAN.When using FIFO, the local access
rates of PACMAN only achieves 71 and 58 percent of
H_SADP and E_SADP, respectively, as shown in Fig. 12a.
Although, E_SADP has lower local access rates than
H_SADP, more data blocks can be prefetched in time. In 80
jobs, the proposed H_SADP and E_SADP are about 1.3 and
1.6 times of local access rates of PACMAN, as shown in
Fig. 12b. When using Fair scheduler, more tasks cannot access
data blocks from local memory or disks due to resource con-
tention. Fig. 13 shows the local access rates using Fair
scheduler.

The proposed H_SADP and E_SADP still have higher
local access rates. In above experiments, the average compu-
tational time of PACMAN, HPSO, TNLS, H_SADP, and
E_SADP is 0.0034s, 0.0028s, 0.0018s, 0.0016s, and 0.0052s in
40 jobs, respectively. DEFAULT passively caches data
blocks when data accessing, so there is no computational
overhead. The computational times of PACMAN, HPSO,
and TNLS are lower but close to H_SADP. E_SADP has the
highest computational time. Comparing with H_SADP, it
increases 68 percent. The following section

5.3 Evaluation of Algorithm Computational Time

In this section, we performed simulations to evaluate our
proposed mechanisms. In the simulation experiments, we
used MatLab [40] to evaluate the computational time of
O_SADP, H_SADP, and E_SADP. The simulations were
conducted on a physical server with 2.50 GHz processor,
16 GB of memory, 1 TB of disk. We assume that 50 and 100

Fig. 11. Data prefetching rate under Fair scheduling. (a) 40 jobs. (b) 80 jobs.

Fig. 12. Local access rate under FIFO scheduling. (a) 40 jobs. (b) 80 jobs.

Fig. 13. Local access rate under Fair scheduling. (a) 40 jobs. (b) 80 jobs.

1750 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

jobs run on 350-node and 3500-node cloud data centers.
Each job is associated with [8TB, 16 TB, 32 TB] of input data-
set, and each computing node is associated with 8 executors
to run the tasks in parallel. The input dataset consists of 128
MB, 128 MB, and 256 MB data blocks, respectively. The ini-
tial number of available executors is randomly ranged from
25 to 75 percent of executors in the system. The tasks in a
job is associated with a processing speed tp ranged from
0.5 to 5. The execution time of a task t is assumed to be tp
divided by the size of its data block. Totally 100 runs are
performed in the simulations.

The average algorithm computational time of the proposed
O_SADP, H_SADP, and E_SADP is respectively 0.0847s,
0.0056s, and 0.0144s in 50 jobs. In 100 jobs, the computational
time of O_SADP, H_SADP, and E_SADP is 4.1526s, 0.0749s,
and 0.2342s, respectively. O_SADP is longer than H_SADP
and E_SADP. The reason is that O_SADP needs to calculate
the all conditional equations for obtaining optimal solution. If
O_SADP is applied in a large-scale data center, the deadline
violation of data prefetching can be increased due to the long
computational time. To adapt SADP in cloud, a greedy
method of H_SADP is used for reducing the computational
time. By sacrificing the optimal solution, the computational
time of H_SADP is about 0.0056s and 0.0749s, respectively. To
boost the benefit time of H_SADP, the data prefetching prob-
lem is transformed to a maximum-cost maximum-flow prob-
lem. By solving the maximum-cost maximum-flow problem,
the number of prefetched data blocks can be effectively
increased and then the benefit data access time can be
increased. Additionally, comparing with O_SADP, E_SADP
also has a relatively lower computational time. In 100 jobs, the
computational time of E_SADP is about 5 percent of
O_SADP. Compare to H_SADP, E_SADP only increases 3.12
times of computational time. However, the computational
time is only about 0.2342s.

6 CONCLUSION

Wehave investigated the data prefetching problem in a large-
scale cloud data center. Considering each computing node in
the cloud has limited memory resources, we provide the
Scheduling-AwareData Prefetching to accelerate the progress
of big data processing. First, we formulate a canonical form of
Integer Linear Programming for obtaining optimal solution.
To make the data prefetching mechanism accommodate to a
large-scale cloud data center, we also propose a heuristic algo-
rithm to prefetch and evict data to/from memory in accor-
dance with job scheduling information. To increase the data
prefetching rates, we also proposed an enhanced version of
the heuristic algorithm. The SADP has been implemented in a
real-testbed. The evaluation results show that the proposed
mechanisms can efficiently perform the data prefetching in
big data processing. Comparing with the default mechanism
used in Alluxio, the proposedmechanism can achieve at least
29 percent reduction of the total job execution time in hetero-
geneous environment.

ACKNOWLEDGMENTS

This research was supported by the Ministry of Science and
Technology, Taiwan under Grant MOST 103-2221-E-001-
028-MY3 and MOST 105-2221-E-002-119-MY3.

REFERENCES

[1] M. Zwolenski and L. Weatherill, “The digital universe rich data
and the increasing value of the internet of things,” Australian J.
Telecommunications Digital Economy, vol. 2, Apr. 2014, doi:
10.7790/ajtde.v2n3.47.

[2] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frame-
works,” in Proc. ACM Symp. Cloud Comput., 2014, pp. 1–15.

[3] H. Karau, A. Kowinski, and M. Hamstra, Learning Spark: Light-
ning-fast Big Data Analysis. Newton, MA, USA: O’Reilly Media,
Inc., 2015.

[4] Apache SparkTM- Lightning-Fast Cluster Computing, 2018.
[Online]. Available: http://spark.apache.org/

[5] Alluxio - Open Source Memory Speed Virtual Distributed Storage,
2018. [Online]. Available: http://www.alluxio.org/

[6] Welcome to ApacheTMHadoop�!, 2018. [Online]. Available:
http://hadoop.apache.org/

[7] C.-H. Chen, T.-Y. Hsia, Y. Huang, and S.-Y. Kuo, “Scheduling-
aware data prefetching for data processing services in cloud,”
in Proc. IEEE 31st Int. Conf. Adv. Inf. Netw. Appl., Mar. 2017,
pp. 835–842.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. Franklin, S. Shenker, and I. Stoica, “Resilient distributed data-
sets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. 9th USENIX Conf. Networked Syst. Des. Imple-
mentation, 2012, pp. 2–2.

[9] X. Shi, M. Chen, L. He, X. Xie, L. Lu, H. Jin, Y. Chen, and S. Wu,
“Mammoth: Gearing hadoop towards memory-intensive MapRe-
duce applications,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 8,
pp. 2300–2315, Jul. 2014.

[10] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. Hellerstein, “Distributed graphlab: A framework for machine
learning and data mining in the cloud,” VLDB Endowment, vol. 5,
no. 8, pp. 716–727, Apr. 2012.

[11] B. Ooi, Y. Wang, Z. Xie, M. Zhang, K. Zheng, K. Tan, S. Wang,
W. Wang, Q. Cai, G. Chen, J. Gao, Z. Luo, and A. Tung, “SINGA:
A distributed deep learning platform,” in Proc. 23rd ACM Int.
Conf. Multimedia, 2015, pp. 685–688.

[12] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,
S. Mittal, and D. Ryaboy, “Storm@twitter,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2014, pp. 147–156.

[13] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Proc. IEEE Int. Conf. Data Mining
Workshops, 2010, pp. 170–177.

[14] R. Gandhi, A. Gupta, A. Povzner, W. Belluomini, and T. Kaldewey,
“Mercury: Bringing efficiency to key-value stores,” in Proc. 6th Int.
Syst. Storage Conf., 2013, pp. 6:1–6:6.

[15] H. Lim, D. Han, D. Andersen, and M. Kaminsky, “MICA: A
holistic approach to fast in-memory key-value storage,” in Proc.
11th USENIX Conf. Networked Syst. Des. Implementation, 2014,
pp. 429–444.

[16] C. Mitchell, Y. Geng, and J. Li, “Using one-sided rdma reads to
build a fast, cpu-efficient key-value store,” in Proc. USENIX Conf.
Annu. Tech. Conf., 2013, pp. 103–114.

[17] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center,” in Proc. 8th USENIX
Conf. Networked Syst. Des. Implementation, 2011, pp. 295–308.

[18] V. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, E. Baldeschwieler, A. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, and H. Shah, “Apache
hadoop YARN: Yet another resource negotiator,” in Proc. 4th
Annual Symp. Cloud Comput., 2013, pp. 5:1–5:16.

[19] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica, “PACMan: Coordinated
Memory caching for parallel jobs,” in Proc. 9th USENIX Conf.
Networked Syst. Des. Implementation, 2012, pp. 267–280.

[20] Z. Yu, M. Li, X. Yang, H. Zhao, and X. Li, “Taming non-local strag-
glers using efficient prefetching in MapReduce,” in Proc. 2015
IEEE Int. Conf. Cluster Comput., 2015, pp. 52–61.

[21] M. Sun, H. Zhuang, C. Li, K. Lu, and X. Zhou, “Scheduling
algorithm based on prefetching in MapReduce clusters,” Appl.
Soft Comput., vol. 38, pp. 1109–1118, Jan. 2016.

[22] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” ACM Commun., vol. 51, no. 1, pp. 107–113,
Jan. 2008.

CHEN ETAL.: DATA PREFETCHING AND EVICTION MECHANISMS OF IN-MEMORYSTORAGE SYSTEMS BASED ON SCHEDULING FOR BIG... 1751

http://dx.doi.org/10.7790/ajtde.v2n3.47
http://spark.apache.org/
http://www.alluxio.org/
http://hadoop.apache.org/

[23] Apache Hadoop 2.7.2 HDFS Users Guide, 2018. [Online]. Avail-
able: https://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-hdfs/HdfsUserGuide.html

[24] Welcome to Swift’s documentation!, 2018. [Online]. Available:
http://docs.openstack.org/developer/swift/

[25] Amazon Simple Storage Service (Amazon S3), 2018. [Online].
Available: https://aws.amazon.com/s3

[26] T. White, Hadoop: The Definitive Guide, 4th ed. Boston, MA, USA:
O’Reilly, 2015.

[27] C. Jin, R. Kang, and R. Li, “VTB-RTRRP: Variable threshold based
response time reliability real-time prediction,” IEEE Access, vol. 6,
pp. 60–71, 2018, doi: 10.1109/ACCESS.2017.2741666.

[28] C.-H. Chen, J.-W. Lin, and S.-Y. Kuo, “MapReduce scheduling for
deadline-constrained jobs in heterogeneous cloud computing sys-
tems,” IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 127–140,
Jan. 2018.

[29] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE 26th Symp. Mass Storage
Syst. Technol., 2010, pp. 1–10.

[30] R. M. Karp, “Reducibility among combinatorial problems,” in
Proc. Symp. Complexity Comput. Comput., 1972, pp. 85–103.

[31] K. Zhang, “A constrained edit distance between unordered
labeled trees,” Algorithmica, vol. 15, no. 3, pp. 205–222, Mar. 1996.

[32] C.-X. Xu, “A simple solution to maximum flow at minimum cost,”
in Proc. 2nd ICIECS, 2010, pp. 1–4.

[33] Z.Han,H. Tan, Y.Wang, and J. Zhou, “Channel selection for rendez-
vouswith high link stability in cognitive radio network,” in Proc. 9th
Int. Conf.WirelessAlgorithms Syst. Appl. - Vol. 8491, 2014, pp. 494–506.

[34] XenServer—Open Source Server Virtualization, 2018. [Online].
Available: http://xenserver.org/

[35] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou, “Improving per-
formance of heterogeneous MapReduce clusters with adaptive
task tuning,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 3,
pp. 774–786, Mar. 2017.

[36] J. A. Issa, “Performance evaluation and estimation model using
regression method for hadoop wordcount,” IEEE Access, vol. 3,
pp. 2784–2793, 2015, doi: 10.1109/ACCESS.2015.2509598.

[37] R. Moussa, “Benchmarking data warehouse systems in the
cloud,” in ACS Int. Conf. Comput. Syst. Appl., May 2013, pp. 1–8.

[38] P. Dreher, C. Byun, C. Hill, V. Gadepally, B. Kuszmaul, and
J. Kepner, “PageRank pipeline benchmark Proposal for a holistic
system benchmark for big-data platforms,” in Proc. IEEE Int. Par-
allel Distrib. Process. Symp. Workshops, May 2016, pp. 929–937.

[39] S. E. Mendili, Y. E. B. E. Idrissi, and N. Hmina, “Benchmarking
study on smart city data analytics,” in Proc. IEEE Int. CiSt,
Oct. 2016, pp. 841–846.

[40] MathWorks�, 2018. [Online]. Available: http://www.mathworks.
com/

Chien-Hung Chen received the BS and the MS in
computer science & information engineering from
Chung Hua University and Fu Jen Catholic Univer-
sity, in 2008 and 2012, respectively and the PhD
degree in electrical engineering from National
Taiwan University, in 2018. He is a technical super-
visor with AVerMedia Technology Inc. He received
a fellowship as a visiting PhD student at Technical
University of Darmstadt in Germany from 2014 to
2015. His research interests include deep learning,
big data, cloud and edge computing, distributed

systems, and internet of things. His HungYang IoT Team received the
award from 2016 FITI Program launched by Ministry of Science and Tech-
nology (MOST). He took the 2nd place in the 2017 Intern Closing Competi-
tion (R&D Group) from Taiwan Semiconductor Manufacturing Company
(TSMC). In 2018, he received the Best PhD Dissertation Award from the
Graduate Institute of Electrical Engineering, National TaiwanUniversity.

Ting-Yuan Hsia received the BS and MS
degrees from the Department of Electrical Engi-
neering, National Taiwan University, in 2014 and
2016. His current research interests include cloud
computing, dependable distributed systems, and
fault-tolerant computing.

Yennun Huang received the BS degree in EE
from National Taiwan University and the PhD
degree in computer science from the University
of Maryland. He is a distinguished research del-
low with Academia Sinica and the director of
Research Center for Information Technology
Innovation (CITI), Academia Sinica. He is cur-
rently the chairman of Internet of Vehicles Com-
mittee of Taiwan IoT Technology and Industry
Association (TwIoTA). He Joined AT&T Bell Labs
as a researcher in 1989 and became a distin-

guished member of Technical Staff of Bell Labs in 1996. He started the
Dependable Computing Research Department in AT&T in 1999 and was
the department head of the organization to ensure the high dependability
of all AT&Tservices. He became the VP of Engineering of PreCache Inc,
a Sony subsidiary, in 2001 to create a multi-media content delivery ser-
vice. In late 2004, He became the AT&T Labs executive director of
Dependable Distributed Computing and Communication Research
Department to lead research on Digital Content Management and IPTV
programs. In 2007, he returned to Taiwan and became anexecutive vice
president of Institute for Information Industry (III). From 2008 to 2011,
He was the president of VeeTIME Co. to create quadruple-play telecom
services including cable TV, FTTx, NGN voice and 4G WiMax. He has
published numerous papers in major journals and conferences, and
more than 20 US patents awarded. He joined Research Center for Infor-
mation Technology Innovation (CITI) of Academia Sinica in 2011 as the
CEO of Security Research Center in Academia Sinica. He also served
the Board of Science and Technology (BOST) of Executive Yuan as a
deputy executive secretary between 2011 and 2015 to help Taiwan
Government on the R&D strategy and budget allocation for Information
and Communication Technology (ICT) Development. He is a fellow of
the IEEE.

Sy-Yen Kuo received the BS degree in electrical
engineering from National Taiwan University, in
1979, the MS degree in electrical & computer
engineering from the University of California at
Santa Barbara, in 1982, and the PhD degree in
computer science from the University of Illinois at
Urbana-Champaign, in 1987. He is the Pegatron
chair professor with the Department of Electrical
Engineering, National Taiwan University (NTU),
Taipei, Taiwan. He was the dean of College of
Electrical Engineering and Computer Science,

NTU from 2012 to 2015 and the chairman of Department of Electrical
Engineering in NTU from 2001 to 2004. He also took a leave from NTU
and served as a chair professor and dean of the College of Electrical
Engineering and Computer Science, National Taiwan University of
Science and Technology from 2006 to 2009. He spent his sabbatical
years as a visiting professor with Hong Kong Polytechnic University
from 2011-2012 and with the Chinese University of Hong Kong from
2004-2005, and as a visiting researcher with AT&T Labs-Research, New
Jersey from 1999 to 2000, respectively. He was a faculty member with
the Department of Electrical and Computer Engineering, University of
Arizona from 1988 to 1991, and an engineer with Fairchild Semiconduc-
tor and Silvar-Lisco, both in California, from 1982 to 1984. In 1989, he
also worked as a summer faculty fellow with Jet Propulsion Laboratory
of California Institute of Technology. His current research interests
include dependable and secure systems, edge and cloud computing,
internet of things, quantum computing. He has published 450 papers in
journals and conferences, and also holds 22 US patents, 23 Taiwan pat-
ents, and 15 patents from other countries. He received the Distinguished
Research Award and the Distinguished Research Fellow award from the
National Science Council, Taiwan. He was also a recipient of the Best
Paper Award in the 1996 International Symposium on Software Reliabil-
ity Engineering, the Best Paper Award in the simulation and test cate-
gory at the 1986 IEEE/ACM Design Automation Conference (DAC), the
National Science Foundation’s Research Initiation Award in 1989, and
the IEEE/ACM Design Automation Scholarship in 1990 and 1991. He is
a fellow of the IEEE, and a member of the IEEE Fellow Committee from
2018-2020. He is also a core member and a member of the Board of
Governors of IEEE Computer Society from 2017-2020.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1752 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 8, AUGUST 2019

https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://docs.openstack.org/developer/swift/
https://aws.amazon.com/s3
http://dx.doi.org/10.1109/ACCESS.2017.2741666
http://xenserver.org/
http://dx.doi.org/10.1109/ACCESS.2015.2509598
http://www.mathworks.com/
http://www.mathworks.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

