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Abstract—Cloud computing services provide flexible comput-
ing and storage resources to process large amount of datasets.
In-memory techniques keep the frequently used data into faster
and more expensive storage media for improving performance
of data processing services. Data prefetching aims to move
data to low-latency storage media to meet requirements of
performance. However, existing mechanisms do not consider
how to benefit the data processing applications which do not
frequently access the same datasets. Another problem is how
to reclaim memory resources without affecting other running
applications. In this paper, we provide a Scheduling-Aware Data
Prefetching (SADP) mechanism for data processing services in
a cloud data center. The SADP includes data prefetching and
data eviction mechanisms. It firstly evicts the data from memory
to release resources for hosting other data blocks, and then it
caches the data that will be used in near future. Finally, real-
testbed experiments are performed to show the effectiveness of
the proposed SADP.

I. INTRODUCTION

In the era of Big Data, the amount of data on the world

will double in size every two years and reach at least 4.4

ZB by 2020 [1]. Cloud data management is one of the key

challenges to improve performance of processing large amount

of data. Nowadays, multi-tiered storage systems are used in

cloud data centers, where different storage media devices

have a variety of capacity and performance capabilities. A

cloud data management system has to decide which data

should be placed on low-latency devices to meet performance

requirements. If there are datasets that will not be accessed

again, the management system should also evict them to high-

latency devices for releasing more valuable resources to meet

performance requirements of other datasets.

In-memory techniques keep datasets in random access mem-

ory to speed up processing of large amounts of datasets. The

techniques are widely used in data processing and data storage

systems. The in-memory data processing systems strive to

analyze a large amount of data in a small amount of time. By

persisting the frequently used data in memory, the execution

time of jobs can be significantly improved, especially for

the iterative jobs that iteratively reading the same datasets.

However, non-iterative jobs are difficult to gain benefits from

in-memory techniques, and the memory resources may be

wasted on storing the datasets that will not be accessed again.

Besides improving read throughput, write workloads are major

bottleneck for data-intensive jobs. An in-memory data storage

system is able to address such bottleneck. It caches output data

in memory and achieves fault-tolerance by leveraging lineage
[2].

In a large cloud data center, many data-intensive jobs may

be running simultaneously. However, each computing node in

the cloud has limited memory space to cache input and output

data for multiple jobs. When a job j1 is writing its output

datasets, the input datasets of job j2 may be evicted from the

memory due to contention of memory resources. In such case,

if the job j2 cannot read its input datasets from memory, its

execution time will be extended. To address this problem, there

is a need for management of memory usage for multiple jobs.

Most in-memory data processing systems reserve memory

space for storing input datasets, intermediate results, and

application programs. An in-memory data processing system

usually caches data in memory when the data is read or

written. Nevertheless, it cannot guarantee that the cached data

will be reused. Even if the data blocks will not be accessed

again, the data blocks may still be kept in memory until the

eviction policy throws them out. If there is not enough space

to cache other data blocks, the system will evict some data

blocks from memory using Least Recently Used (LRU) policy

[3]. In-memory storage systems adopt the same policy to deal

with the datasets. Due to that the policy is not aware of which

data blocks will be accessed, it may evict the data blocks that

will be accessed in near future. In the meantime, it can also

keep other unnecessary data blocks in memory.

To deal with these problems, in this paper, we provide a

Scheduling-Aware Data Prefetching (SADP) mechanism for

data processing services in a cloud data center. The proposed

SADP includes data prefetching and data eviction mecha-

nisms. For the eviction mechanism, it aims to release memory

space without affecting the access of running applications.

When a block of datasets has already processed by a task, the

data block will be released from memory space if it will not be

accessed again. The data prefetching mechanism is aware of

the job scheduling in a cloud data center. It is able to load input

data into memory before its corresponding tasks are executed.

The proposed mechanisms are implemented by modifying

Spark [4] and Alluxio [5]. Apache Spark has become a popular

in-memory data processing system. It optimizes the execution

of data-intensive applications with features of interactive data

exploration and multi-pass analytics. Alluxio is an in-memory
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data storage system with ability to manage data in tiered stor-

age. Multi-tiered storage is conducive to balance capacity and

performance requirements of data storage. It provides more

flexible data management in a cloud data center. Currently,

the data prefetching and data eviction policies still do not take

job scheduling into account. The proposed mechanisms can

retrieve scheduling information and then use this information

to prefetch and evict data to/from memory.

Overall, this paper makes the following contributions:

• We propose data prefetching and eviction mechanisms

which consider multiple jobs running on a large-scale

cloud data center, where the cloud data center has limited

memory resources.

• We eliminate the gap between computing layer and

storage layer in a cloud, such that the storage layer is

no longer agnostic to job scheduling. If a data computing

service is running on the cloud, the data storage system

is aware of which pending tasks will be executed in near

future.

• We optimally solve the data prefetch problem by Integer

Linear Programming (ILP). Then, we propose an effi-

cient heuristic algorithm, called Scheduling-Aware Data

Prefetching (SADP), to solve the data-prefetching prob-

lem in a large-scale cloud data center.

• We implement a prototype of our mechanisms on a real-

testbed. We show that the proposed mechanisms can

achieve about 1.59x faster than default mechanism.

The rest of this paper is organized as follows. The related

work is given in Section II. Section III gives system model.

Section IV presents our mechanisms. Section V shows the

evaluations of the proposed mechanisms. Finally, section VI

concludes this paper.

II. RELATED WORK

To improve the performance of data processing, in-memory

techniques have been extensively used in data processing

systems. Spark [6] is a popular data processing framework

for data analysis. It presents a data abstraction, called resilient

distributed dataset (RDD), which allows application jobs to

cache intermediate results in memory with a fault-tolerance

mechanism. Mammoth [7] is an implementation of in-memory

techniques based on MapReduce framework. It aims to allo-

cate and reclaim memory resources among computing nodes

for enhancing overall performance of application jobs. In the

system, each computing node is deployed a special engine

to globally manage the memory resources among a cluster.

GraphLab [8] is an efficient shared-memory implementation of

parallel computing framework for machine learning. A graph-

based data model is exploited for representing data and com-

putational dependencies. However, it assumes all data can be

stored in memory without the problem of resource contention.

SINGA [9] is an open-source platform for distributed deep

learning. It is able to support different neural net partitioning

schemes and training frameworks. Shared memory resources

among the systems are leveraged to store intermediate results

for reducing data accessing costs. More data processing sys-

tems are proposed for real-time purposes, such as Apache

Storm [10] and Yahoo! S4 [11]. Among existing in-memory

data processing systems, these systems only take intermediate

data of an application job into account, therefore these in-

memory data processing systems can only benefit from the

jobs iteratively accessing the same datasets. On the other hand,

memory resource contention is not considered as well. If there

are multiple jobs run on the system, some portions of the

intermediate data will be evited from memory, such that these

application jobs have to read them from hard disk drives.

In general, there are two types of in-memory storage sys-

tems: file systems and database systems, respectively storing

unstructured and structured data. Alluxio, formerly called

Tachyon [2], is a distributed file system. It can work as a

cache system to enhance performance of data accessing for

other file systems and databases. Alternatively, it can work

as a standalone in-memory file system managing the storage

resources. Mercury [12] is a distributed in-memory database

for storing structured data. A dedicated hash table is designed

for small data sizes of key-value pairs to improve throughput

of data analytics jobs. MICA [13] is a key-value in-memory

storage system focusing on both read- and write-intensive

jobs. It aims to use fewer high-performance computing nodes

to reduce latency of data access. New data structure and

memory management are designed for optimizing data store

and cache by using the properties of the jobs. Pilaf [14]

is a distributed in-memory key-value storage system with

high-performance networks. It allows application jobs directly

access the data stored in memory from remote computing

nodes. A self-verifying data structure is also provided to

address contention of read-write operations. Including above

systems, most existing in-memory storage systems focus on

design of memory management based on specific properties of

data structures and iterative jobs. However, the job scheduling

is not taken into account.

Job scheduling plays an important role in allocating CPU

and memory resources for executing data processing jobs

among a large-scale cloud. In Spark, it supports three modes

of scheduling to deal with multiple jobs: Standalone, Mesos,

and YARN. In standalone mode, all jobs in a cluster are run

in FIFO (first in, first out) order. The tasks of each job can

be allocated to all computing nodes for reaching maximum

usage of CPU and memory resources [3]. In Mesos mode,

the system allocates resources in accordance with user-defined

policy, such as fair sharing and strict priority [15]. It can

also share system resources at different granularities based

on latency requirements of Spark jobs. In YARN mode, one

of simple FIFO, Capacity, and Fair Share schedulers can be

selected depending on the user needs [16]. In addition, data

locality can have significant impacts on job scheduling. A task

of running jobs prefers to be allocated to where its input data

stored. Therefore, the job schedulers are designed around the

general principle of data locality.

836



III. PRELIMINARIES

This section presents the system model of in-memory sys-

tems used in this paper. The assumptions and definitions of

the data prefetching problem are also stated.

A. System Model

Spark is a big data processing framework designed to be fast

and general purpose. The resilient distributed dataset (RDD)

is the core concept in Spark. It represents a collection of

data partitions distributed across many computing nodes. A

Spark job can be divided into two or more stages, where each

stage consists of a set of tasks. The stages are processed in

order defined by a directed acyclic graph (DAG). A central

process, called the driver, is responsible for coordinating with

a number of executors to run the tasks of the given job. The

number of tasks in a stage is the same as the number of data

partitions generated in the previous stage. Each task within a

job accesses its corresponding data partition, then it performs

either transformation or action operations. If a task performs

transformation, its output is constructed as new RDDs. If it

performs action, it will return the computing results to the

driver process or store the output of the job. When a Spark job

is submitted, the driver process firstly asks the cloud manager

for resources to launch executors. Tasks of the given job

are sent to the executors to perform transformation or action

operations. In the first stage of a job, the tasks usually perform

transformation operation to load each data block of the input

datasets from an external storage system and create RDDs.

In the last stage, the tasks perform action operation to save

output results to the external storage system. Our proposed

mechanisms aim to prefetch and evict the data blocks of the

datasets stored in the external storage system, instead of the

data partitions of RDDs used in data processing layer.

Alluxio is the external storage system of Spark used in this

paper. It supports tiered storage to manage data blocks stored

in memory (MEM) and hard disk drive (HDD). When a job is

writing new data block to the external storage, the data blocks

will be firstly cached to the memory. If there is no enough

space to accommodate new data blocks, the system will evict

the least recently used data blocks cached memory by default.

For the under storages, Alluxio can integrate with various

under storages, such as Apache HDFS [17], OpenStack Swift

[18], Amazon S3 [19], etc. The HDFS, a popular distributed

file system, is used as the under storage of Alluxio. It can

be deployed to the same computing ndoes with Spark and

Alluxio, so that the system can take advantage of data locality

to avoid network transmission delay. The system architecture

we used is illustrated in Fig. 1. As shown in Fig. 1, Spark,

Alluxio and HDFS are installed among the computing nodes,

where Spark is responsible for executing data processing jobs.

Alluxio is the external storage system of the Spark. It reserves

a part of memory space of each computing node for caching

data blocks from its under storage system. HDFS is the under

system of Alluxio storing input and output datasets of Spark

jobs into hard disk drives.
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Fig. 1. The architecture of our system.

B. Assumptions and Definitions

Based on the given system model, this paper investigates the

Scheduling-Aware Data Prefetching based on Spark Frame-

work, called SADP. Before elaborating our proposed mecha-

nisms, we first give the following assumptions and definitions.

Assumption 1. Given a large-scale cloud with a set of com-
puting nodes N . In addition to process data, each computing
node n ∈ N can also store data blocks. The computing nodes
functionality are similar to the slave nodes in Spark, Alluxio,
and HDFS.

Assumption 2. Among the computing nodes, there are two
sets of data blocks Dh and Dm. The Dh denotes a set of data
blocks stored in hard disk drives, where their corresponding
tasks are the pending tasks. Dm denotes a set of data
blocks cached in memory, where their corresponding tasks are
running or completed.

Assumption 3. If there is a job writing new data blocks to the
external storage system, the new data blocks will be cached
in memory first. In the other hand, if there is a job reading
data blocks from the external storage, the data blocks will also
be cached in memory. It is possible that there are many data
blocks cached by other jobs or external storage at the same
time.

Assumption 4. Each node n ∈ N has reserved a certain of
memory for caching data blocks. Due to space limitation, each
node cannot cache too many data blocks for jobs read and
write. If the memory space is not enough to accommodate more
data blocks, the system will evict data blocks from memory for
releasing more memory resources. The evicted data blocks are
then stored into hard disk drives of under storages.

Assumption 5. The information of both job scheduling and
datasets can be obtained from the master node of the system.
Each node in the cloud periodically reports the states of the
running tasks and the stored data blocks to the master node.
The master, therefore, can allocates tasks to the computing
nodes based on a specific scheduling manner.
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Assumption 6. Each data block di is associated with a
probability pi and a time cik, where the pi denotes the
probability that the data block di will be reused (referenced),
cik is the benefit time from persisting the data block di in
memory of node k. Note that, if the data block di is persisted
in memory and read by a task, the benefit time is the time
accessing to the hard disk drive minus the time accessing to
the memory.

Based on the above assumptions, the problems we investi-

gated in this paper are defined as follows.

Definition 1. The main objective of the prefetch problem is
to find an optimal dataset Dopt from datasets Dh and Dm,
which can maximize the total re-use probability and the total
benefit time.

IV. PROPOSED MECHANISM

A. Optimal Solution

The prefetching problem can be optimally solved by Integer

Linear Programming (ILP). ILP is a well-known mathematical

technique to solve optimal problems, where its canonical

form includes a linear objective function, a number of lin-

ear constraints, and an integer solution set. In this section,

the canonical form of ILP corresponding to the prefetching

problem is expressed as Eq. (1) to Eq. (5). The used notations

can be found in Table I.

Maximize
∑

∀i∈Dh

∑

∀k∈N

xik × {α · pi + (1− α) · cik}

−
∑

∀j∈Dm

∑

∀k∈N

yjk × {α · pj + (1− α) · cjk},
(1)

subject to ∀i ∈ Dh,
∑

∀k∈N

xik ≤ 1, (2)

∀j ∈ Dm,
∑

∀k∈N

yjk ≤ 1, (3)

∀k ∈ N,
∑

∀i∈Dh

xik −
∑

∀j∈Dm

yjk = ak, (4)

∀i ∈ Dh ∧ ∀j ∈ Dm ∧ ∀k ∈ N, xik, yjk ∈ {0, 1}. (5)

For the Eq. (1), it is the objective function of the canonical

form. There are two maximum terms in the objective function.

The first term is the total weight of data blocks prefetching

to memory, and the second term is the total weight of data

blocks evicting to hard disk drives. The symbol Dh denotes

a set of data blocks stored in hard disk drives, where their

corresponding tasks are the pending tasks. The Dm denotes

a the set of data blocks cached in memory, where their

corresponding tasks are running or completed. N is a set of

nodes in the cloud. In the Eq. (1), the data prefetching and

eviction can be obtained based on the binary variables xik and

yjk respectively. If xik is 1, the corresponding data block di
is selected to be cached in memory of node k. If yjk is also

1, the corresponding data block dj is evicted from memory to

TABLE I
SUMMARY OF NOTATIONS

Notation Description

Dh
A set of data blocks stored in hard disk drives, where
their corresponding tasks are the pending tasks.

Dm
A the set of data blocks cached in memory, where their
corresponding tasks are running or completed.

N A set of computing nodes in the cloud.

ak The available memory space in computing node k.

xik
The 0,1 variable indicates whether a data blocks di is
prefetched in memory of node k.

yjk
The 0,1 variable indicates whether a data blocks dj is
evicted from memory of node k.

α A weight coefficient with value from 0 to 1.

pi (pj )
The probability that the data blocks di (dj ) will be
referenced.

cik (cjk)
The benefit time from caching data blocks di (dj ) in
the memory of node k.

hard disk drives of node k. The variables pi and pj are the

probabilities that the data blocks di and dj will be accessed.

The benefit times from caching data blocks di and dj in the

memory of node k are respectively denoted by cik and cjk. The

α is a weight coefficient with value from 0 to 1. If the weights

are completely depended on the probability of access, the value

of α is then set as 1. Conversely, if α is set as 0, the weights

are totally depended on the benefit time. Based on the Eq.

(1), the canonical form attempts to maximize the total weight

by prefetching the data blocks with higher access probability

or benefit time. When the memory is full, if there is a data

block di witch weight is greater than the data block dj , the

objective function will evict dj and cache di by setting xik and

yjk as 1. Note that, if there is a data block that is evicted from

memory, the canonical form will cache another data block due

to Eq. (4). The reason will be explained later. From the above

description, we can know that the canonical form will firstly

prefetch data blocks with high weights as many as possible.

Then, it replaces low-weight data blocks by high-weight data

blocks. Eq. (2) and (3) respectively express that a data block

stored in hard disk drives and memory can only be cached

or evicted once. In Eq. (4), ak denotes the available memory

space in computing node k. It limits that each node cannot

cache too many data blocks to exceed the capacity of its

memory space. The number of prefetched data blocks in a

node should equal to the number of evicted data blocks plus

the free memory space of the node. Due to this constraint, the

high-weight data blocks will fill up the free memory space of

the system, and the low-weight data blocks in memory can

be replaced by high-weight data blocks. Finally, the Eq. (5) is

given for setting the solution domain. The variables xik and

yjk can only be 0 or 1, respectively.
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B. Scheduling-Aware Data Prefetching

In the above canonical form, there are |Dh| × |N | and

|Dm| × |N | binary variables in xik and yjk. In a cloud,

the number of nodes |N | is usually large. Solving ILP is

well known to be NP-complete [20]. If |Dh|, |Dm| and

|N | are large, the above canonical form of ILP will take

much computational time to obtain the optimal solution of

the prefetching problem. To reduce the computational time,

we first make the following assumption. Then a heuristic

algorithm is proposed to solve the prefetching problem.

• For the jobs in the system, their task execution sequence

and task execution time can be known in advance.

Assumptions 5 has defined the capability. With this

capability, the heuristic algorithm can find suitable data

blocks evicting from memory and then prefetch input data

blocks for upcoming tasks.

In this section, we present a new prefetching mechanism,

which assumes that the scheduling information is available

from computing layer. The mechanism consists of three

phases: initial phase, eviction phase, and prefetching phase.

To emphasize that the mechanism is aware of the scheduling

information, the proposed mechanism is called the Scheduling-

Aware Data Prefetching (SADP). The basic idea of the SADP

is given in Fig. 2. When a job is submitted, the job is associated

with an input dataset, and then it will be put in a ready

queue. The input dataset is divided into multiple data blocks.

Each task of the job can read or write its corresponding

data block from/to the external storage. Before submitting

the job, other jobs may have been running simultaneously

in the cloud. In such case, the start time and completion

time of each tasks can be estimated by retrieving scheduling

information, such as running states of tasks and the sequence

of task execution. The input data blocks stored in hard disk

drives are collected in a dataset Dh, and other input data

blocks that have already cached in memory are collected in a

dataset Dm. The location of data blocks can be obtained from

the external storage system. The initial phase is used to find

which data blocks are evictable or prefetchable. Based on the

execution sequence of tasks, the mechanism can clearly know

which tasks have completed and witch tasks will be launched

in near future. If a task has processed its corresponding

data, the data block will be considered can be evicted from

the memory. In the eviction phase, the proposed mechanism

estimates how many data blocks stored in hard disk drives

will be accessed. If remaining memory space is not enough

to prefetch data blocks, it releases memory resources with

considering of system overheads. Finally, in prefetching phase,

the mechanism prefetches the corresponding data blocks of the

upcoming tasks.

1) Initial Phase: Before a new job is submitted to the cloud,

its input datasets have already been stored in the external

storage system. When a new job is submitted to the cloud,

both of its input and output datasets have been specified.

The new job is then put in the job ready queue for waiting

execution. While there may already have a number of jobs

Input: A set N of computing nodes, and two sets of data

blocks.

Output: Data prefetching and eviction of the datasets.

1: /* Initial Phase */
2: for each job j of J do
3: Dp ← Find the data blocks that can be prefetched into

memory.

4: De ← Find the data blocks that can be evicted from

memory.

5: end for
6: /* Eviction Phase */
7: e ← Calculate the number of data blocks that should be

evicted from memory.

8: E ← Find un-modified data blocks from De.

9: if e > |E| then
10: E ← Find e− |E| modified data blocks from De.

11: end if
12: /* Prefetching Phase */
13: for each node n in N do
14: for data block di stored in n and di in Dp do
15: if the corresponding task of di will be launched then
16: P ← P ∪ di.
17: end if
18: end for
19: end for

Fig. 2. Basic idea of the Scheduling-Aware Data Prefetching.

running simultaneously in the cloud, it is necessary to find

the following data blocks before running the pending tasks of

the jobs.

• Evictable data blocks (The data blocks that can be
evicted from memory). When multiple jobs running in

the cloud, several data blocks may have been cached in

memory. If a job reads its input dataset from the external

storage system, each task of the job only reads one data

block of the dataset. It means that the corresponding data

block of a completed task will not be accessed again.

Evicting such data block will not affect accessing of other

running tasks. In this phase, the proposed mechanism

first decides which data blocks can be evicted without

affecting other running tasks.

• Prefetchable data blocks (The data blocks that can
be prefetched into memory). Considering multiple jobs

running on the cloud with limited computing resources,

only a portion of tasks can run simultaneously in the

cloud at a time. According to job scheduling, each

computing node in the cloud can only launch a specific

number of tasks. As mentioned above, each task of a job

has only one input data block. Therefore, the number of

prefetchable data blocks can be decided in accordance

with the number of upcoming tasks.

An example is given in Fig. 3, where there are two jobs

running in a cloud. The job j1 performs reading, and the job

j2 performs writing, respectively. Based on the job scheduling,
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the jobs j1 and j2 respectively hold two executors to perform

their tasks. The task execution sequence is according to the

indexes of tasks. The t1,3 and t1,4 are two tasks of job

j1 respectively reading data blocks d1,3 and d1,4 from the

external storage system, and the tasks t2,4 and t2,5 of job j2
respectively write the data block d2,4 and d2,5 to the external

storage system. There are 9 data blocks d1,1, d1,2, d1,3, d1,4,

d2,1, d2,2, d2,3, d2,4, and d2,5, that have already cached in

memory of the external storage system. We assume that the

external storage system can at most cache 10 data blocks in

memory. The initial phase firstly determines the number of

data blocks that can be evicted from the memory. Based on the

task execution sequence, the tasks t1,1, t1,2, t2,1, t2,2, and t2,3
are finished. Therefore, their corresponding input data blocks

d1,1, d1,2, d2,1, d2,2, and d2,3 are decided to be evictable data

blocks. After finding the evictable data blocks, the eviction

phase then determines the number of data blocks that can be

prefetched into memory. In this phase, all of the pending tasks

t1,5, t1,6, t1,7, t1,8, t2,6, t2,7, t2,8, and t2,9 are the tasks that

will be launched in near future. Their corresponding input

data blocks d1,5, d1,6, d1,7, d1,8, d2,6, d2,7, d2,8, and d2,9
are decided to be the prefetchable data blocks. Finally, eight

data blocks are decided to be prefetchable data blocks. The

above initial phase just decides which data blocks are evictable

and prefetchable. The executions of eviction and prefetching

are actually performed in the following eviction phase and

prefetching phase.

2) Eviction Phase: In above initial phase, the evictable

data blocks are found. However, there are two types of

evictable data blocks: droppable data blocks and modified

data blocks. The droppable data blocks are the data blocks

that do not be modified when they are persisting in memory.

Conversely, the modified data blocks are the blocks that have

been modified. These modified data blocks are maintained by

the external storage system. By default, the external storage

system achieves data fault tolerance using lineage technique

[2]. Any changes of data blocks are traced by a logical directed

acyclic graph (DAG). It means that any data blocks written by

jobs will be persisted in the memory first. If these data blocks

are evicted from memory before writing to hard disk drives,

the evicted data blocks will be lost. Therefore, if the modified

data blocks are selected to be evicted, these data blocks should

be written to the hard disk drives before eviction. In the

eviction phase, the proposed mechanism calculates how many

data blocks will be prefetched, and then it decides which

evictable data blocks should be evicted from memory. To avoid

affecting other tasks accessing their data blocks, the empty

memory space is preferred to be used. Instead of modified

data blocks, the droppable data blocks are firstly selected to

be evicted from memory. From the example of Fig. 3, the

data blocks d1,1, d1,2, d2,1, d2,2 and d2,3 are the evictable

data blocks decided in initial phase, where the d1,1 and d1,2
are droppable data blocks without modification, the d2,1, d2,2
and d2,3 are modified data blocks. The job scheduling reveals

that 4 pending tasks will be launched after completing the

running tasks. At least 4 corresponding data blocks of the

Job Completed tasks

j1 t1,1, t1,2
j2 t2,1, t2,2, t2,3

Job Running tasks

j1 t1,3, t1,4
j2 t2,4, t2,5

Job Pending tasks

j1 t1,5, t1,6, t1,7, t1,8
j2 t2,6, t2,7, t2,8, t2,9

Task and its corresponding data block

Task t1,1 t1,2 t1,3 t1,4 t1,5
Data block d1,1 d1,2 d1,3 d1,4 d1,5

Task t1,6 t1,7 t1,8
Data block d1,6 d1,7 d1,8

Task t2,1 t2,2 t2,3 t2,4 t2,5
Data block d2,1 d2,2 d2,3 d2,4 d2,5

Task t2,6 t2,7 t2,8 t2,9
Data block d2,6 d2,7 d2,8 d2,9
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Fig. 3. An example to demonstrate the SADP.

pending tasks will be prefetched in the memory. Based on the

memory space, it can accommodate one data block. Totally 3

data blocks among the evictable data blocks have to be evicted.

According to the mechanism described above, two droppable

data blocks d1,1 and d1,2 are firstly selected to be evicted, and

then the modified data block d2,1 is selected. After selecting

the droppable and modified data blocks, the selected modified

data blocks are written to hard disk drives of the external

storage system, and then the selected data blocks are evicted

from memory. Comparing to the default eviction mechanism,

the data blocks d1,1, d2,1 and d2,2 will be selected by LRU.

However, our proposed mechanism can select fewer modified

data blocks.

3) Prefetching Phase: Finally, the proposed mechanism

turns into the prefetching phase. When the free memory
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Fig. 4. Normalized total job execution time under FIFO scheduling. (a) 20 jobs. (b) 40 jobs.
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Fig. 5. Normalized total job execution time under Fair scheduling. (a) 20 jobs. (b) 40 jobs.

resources are distributed crossing the cloud data center, a

pending task may be launched on a computing node different

from the location of its corresponding data block. In prefetch-

ing phase, the proposed mechanism aims to select which

data block should be cached in memory of each computing

node. As mentioned in Section II, the scheduler prefers to

allocate pending tasks to where their input data blocks located

to achieve data locality [16]. Based on data locality and

scheduling policy, we can know which pending tasks will

be launched on a specific computing node. As shown in Fig.

3, task t1,3 runs on computing node n1. If the running task

t1,3 is completed, the node n1 will release an executor to run

another pending task. To achieve data locality, the computing

node n1 prefers to run the pending tasks of t1,5 and t2,9.

The scheduler will select the task t1,5 to run on node n1

for reserving computing resources for each job. Therefore,

the corresponding data block d1,5 of task t1,5 is selected to

be prefetched into memory of computing node n1. In the

prefetching phase, it will check each computing node for

prefetching data blocks. In the example of Fig. 3, the data

blocks d1,6, d2,7 and d2,6 are selected to be prefetched in

memory of computing nodes n2, n3, and n4, respectively.

V. EVALUATION

A. Experimental Environments

We establish our testbed by using the XenServer virtualiza-

tion software [21] to configure 20 virtual machines on 4 physi-

cal machines. The proposed SADP mechanism is implemented

by modifying the source code of Spark 1.6.1 and Alluxio 1.2.0

involving classes of TaskSetManager, DAGScheduler, Task-

Info, SparkContext, AlluxioBlockStore, LoadBlockCommand,

etc. In the testbed, each physical machine is with quad core

3.30 GHz processor, 32GB of memory, and 2TB of disk. The

network connection between machines is Gigabit Ethernet.

We configure each virtual machine with 4 vCPU cores, 4

GB of memory, and 256 GB of disk. The proposed SADP

mechanism is compared with the default mechanisms in Spark

and Alluxio. For the aspect of job workloads, WordCount

and TextSearch [22] are adopted as two benchmark jobs to

represent different kinds of job workloads. In each testbed

run, we submitted 20 to 40 jobs from the benchmark jobs.

Each benchmark job is with four jobs by varying the sizes of

input datasets as 10 GB, 20 GB, 30 GB, and 40 GB. After the

above settings, 50 evaluation runs are performed. We concern

the total job execution time as the metric in each evaluation

run.
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B. Experimental Results

The testbed experimental results are shown in Fig. 4 and

Fig. 5. Fig. 4 shows the comparison of the total job execution

time in testbed environments with FIFO scheduling based on

the average case, best case, and worst case. Here, the total job

execution time of each mechanism is normalized against the

average total job execution time of the default mechanism. In

the average case, the SADP can achieve the improvement of

the total job execution time about 24% in 20 jobs. In 40 jobs,

the SADP achieves the average improvement of the total job

execution time about 26%. The SADP can prefetch input data

blocks into memory before the corresponding tasks running

on the cloud. Therefore, the running tasks can efficiently read

their input data blocks from memory instead of from hard

disk drives. As increasing the number of jobs, the proposed

mechanism can gain more improvement.

Fig. 5 shows the comparison of the total job execution time

with Fair scheduling in 20 jobs and 40 jobs, respectively.

The total job execution time is normalized against the average

total job execution time of using default mechanism as well.

Comparing to default mechanism, the SADP improves 32%

of the total job execution time, as shown in Fig. 5(a). With

larger job workloads, the jobs will incur longer access time

due to resource contention. Even the SADP is aware of the

job scheduling, the resource contentions among jobs can still

extend the execution time of jobs. However, the SADP tries

to achieve better memory usage. In the 40 jobs, the total job

execution time of the SADP achieves 37% of that of default

mechanism on average, as shown in Fig. 5(b).

VI. CONCLUSION

We have investigated the data prefetching problem in a

large-scale cloud data center. Considering each computing

node in the cloud has limited memory resources, we provide

two solutions to solve this problem. Firstly, we formulate a

canonical form of Integer Linear Programming (ILP) for ob-

taining optimal solution. To make the data prefetching mech-

anism accommodates to a large-scale cloud data center, we

also propose a heuristic algorithm, called Scheduling-Aware

Data Prefetching (SADP), to prefetch and evict data to/from

memory in accordance with job scheduling information. The

prototype of SADP has been implemented in a real-testbed.

The evaluation results show that the proposed mechanisms can

efficiently perform the data prefetching for data processing

services. The proposed mechanism can achieve 24% reduction

in the total job execution time, and its improvement rate

increases with the number of jobs.
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